
AndroLibZoo: A Reliable Dataset of Libraries Based on Software
Dependency Analysis

Jordan Samhi𝛼 , Tegawendé F. Bissyandé𝛽 , Jacques Klein𝛽
𝛼CISPA – Helmholtz Center for Information Security, jordan.samhi@cispa.de

𝛽SnT, University of Luxembourg, Luxembourg, {tegawende.bissyande, jacques.klein}@uni.lu

ABSTRACT

This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version is:
https://doi.org/10.1145/3643991.3644866.

Android app developers extensively employ code reuse, inte-
grating many third-party libraries into their apps. While such inte-
gration is practical for developers, it can be challenging for static
analyzers to achieve scalability and precisionwhen libraries account
for a large part of the code. As a direct consequence, it is common
practice in the literature to consider developer code only during
static analysis –with the assumption that the sought issues are in
developer code rather than the libraries. However, analysts need to
distinguish between library and developer code. Currently, many
static analyses rely on white lists of libraries. However, these white
lists are unreliable, inaccurate, and largely non-comprehensive.

In this paper, we propose a new approach to address the lack of
comprehensive and automated solutions for the production of accu-
rate and “always up to date" sets of libraries. First, we demonstrate
the continued need for a white list of libraries. Second, we propose
an automated approach to produce an accurate and up-to-date set
of third-party libraries in the form of a dataset calledAndroLibZoo.
Our dataset, which we make available to the community, contains
to date 34 813 libraries and is meant to evolve.

1 INTRODUCTION

Static analysis is a popular technique used in the literature to ana-
lyze Android apps, it analyzes app code without executing it. This
approach is widely used to uncover security issues [17]. For exam-
ple, researchers apply static analysis techniques to detect privacy
leaks [3, 15, 21, 22, 26] and detect malicious code [8, 10, 23, 24].
However, most of these approaches need to differentiate between
developer and library code to focus on the app’s functionality, which
is the relevant code for finding security problems and avoiding scala-
bility issues (due to the widespread use of polymorphism in libraries
and the over-approximation of static analyzers). This is why static
analyzers do not dive into the Android framework code during anal-
yses (e.g., FlowDroid discards classes that are within the Android
framework, cf. lines 64–69 in FlowDroid’s SystemClassHandler
class [20]). Differentiating between developer and library code is,
therefore, a crucial step for static analysis to be effective and more
scalable [27, 29], as it allows analyzers to focus on the parts of the
app that are most likely to contain security issues.

Furthermore, libraries can introduce noise for malware detection.
For example, Mudflow [4] and DroidAPIMiner [1] show that dis-
carding libraries in their analyses improves their malware detection
performance. A reliable list of libraries is thus an important artifact
for the research and analyst community.

Previous studies have employed white lists to identify libraries
in Android apps. Chen et al. [9] manually compiled a list of 73
package names from common libraries. Similarly, Grace et al. [11]
randomly selected apps from a dataset of 100 000 apps that were
manually screened to identify libraries. With this approach, they
created a list of 100 libraries. These lists are ad-hoc and incomplete,
as they only contain 73 and 100 libraries, respectively. Another
method to build a white list of libraries has been proposed by Li et
al. [16]. Their approach involves using a large dataset of apps to
identify candidate libraries. The process includes ranking all pack-
age names by frequency of appearance in apps and using heuristics
to retain libraries. However, though the approach is considered the
state-of-the-art white list of libraries in the literature [6], the list
provided is outdated, the method used to create the list relies on
arbitrary heuristics, and the hypothesis to consider a package name
as a library according to its occurrence leads to a high rate of false
positives (if numerous versions of the same app are present, for in-
stance: 20 715 different versions of app “com.slideme.sam.manager"
are present in AndroZoo). Hence, creating a comprehensive white
list of libraries to discriminate the developer code from libraries
accurately remains an open challenge.

In this work, we propose a novel approach to build the first exten-
sive and precise, by construction, white list of libraries by mining
software dependencies. Contrary to the research literature, which
often relies upon complex approaches [28], our method involves
mining information from developer habits. We propose to the re-
search and analyst communities a dataset called AndroLibZoo,
containing 34 813 libraries. AndroLibZoo is accurate by construc-
tion, i.e., it only contains libraries. This dataset is meant to evolve
and regularly incorporate new libraries added by third-party ven-
dors. AndroLibZoo aims to facilitate the work of static analysis
analysts in terms of scalability and robustness. We believe this
dataset will be a valuable resource for static analysis, we encourage
its use and expansion as new libraries become available.

Overall, this paper makes the following contributions:
• We show that white list of libraries are still needed.
• We propose an approach to build an accurate set of libraries.
• We build AndroLibZoo, the first version of the library

dataset produced by our approach.
Our artifacts are available:

https://github.com/JordanSamhi/AndroLibZoo
https://zenodo.org/records/10072709

2 MOTIVATION

In this section, we motivate our work with a study to demonstrate
the need for a white list of libraries.

Despite existing approaches’ limitations, it is unclear whether
white lists of libraries are still necessary in practice, mostly due

https://github.com/JordanSamhi/AndroLibZoo
https://zenodo.org/records/10072709


Jordan Samhi
𝛼
, Tegawendé F. Bissyandé

𝛽
, Jacques Klein

𝛽

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

20
17

13
9

5
5
4

2
2
3
3
4

7

1
2

1
1

1
1

1
1
1

3
4

7
7

79
81

86
90

94
94
95

97
97
94
93

89
86

Number of FQCN within app package Number of obfuscated FQCN Rest

%
%

%
%

%
%
%
%
%
%
%
%
%

%
%

%
1%

%

%
%

%
%

%
%
%

%

%

%
%

%
%
%

%

%

%
%

Figure 1: Proportion of FQCNs within the apps’ package and

obfuscated FQCNs

to the usage of obfuscation. Hence, a legitimate question is: To
what extent does obfuscation jeopardize the use of a white

list in Android apps? To address this question, we conducted
a motivating study examining the prevalence of package name
obfuscation in Android apps.

Let us first introduce name obfuscation, a technique used to
remove package names and/or class names’ meaning to prevent or
hinder reverse engineering andmakemalicious code detectionmore
difficult. Typically, package and class names havemeaningful names
to make it easier for developers to understand the app structure
and the code’s purpose. Obfuscation is both used to protect apps’
intellectual property and to make malicious code harder to detect.
Most code obfuscators replace package or class names with simple
letters from the alphabet [16, 18]. For instance, the package name
“com.example.myapp.MyClass" could be obfuscated such as: ① only
the class name could be ofuscated: com.example.myapp.a; ② only
the package name could be obfuscated: a.b.c.MyClass; ③ both the
package name and the class name can be obfuscated: a.b.c.d.a;
or ④ the package name can be removed: a.

To conduct this study, we randomly selected 10 000 apps per
year from the Androzoo [2] dataset for each year from 2010 to
2022 and checked whether any of the Fully Qualified Class Names
(FQCNs) in these apps either: ① started with a letter of the alphabet
(e.g., a.b.*, or g.u.*); or ② its class name is a single letter of the
alphabet (e.g., com.example.a or f.w.i). This allows us to cover
all the cases cited above.

The results of this study are shown in Figure 1. This figure
presents three categories of FQCNs: ① the number of fully qualified
class names that are within the package name of the app, i.e., the
one declared in the manifest (e.g., if the package name of the app is
org.example and FQCN is org.example.MyClass); ② the number
of FQCNs that have been obfuscated, as defined previously; ③ the
number of all remaining FQCNs, i.e., FQCNs that are not within
the package name of the apps nor in an obfuscated package name.

This study shows that a low percentage of classes are in the
app package (i.e., package with the app package name). But more
importantly, the percentage of obfuscated FQCNs in the apps is
even lower, even if this percentage appears to be growing over time.
The largest percentage is made up of FQCNs that are neither within
the package name of the app nor obfuscated. These results suggest

pom.xml

pom.xml

pom.xml

Maven
Repository Index Libraries

Dependency
Trees Transitive

Dependencies Libraries

Google
Repository Website Libraries

Open-Source
Projects

Source
Code

Gradle
Files

Imports

Repositories

Libraries

Websites Libraries

Refinement

AndroLibZoo

Figure 2: Overview of our methodology to construct An-

droLibZoo, a collection of third-party libraries.

that the use of name obfuscation techniques is not yet widespread
enough to render white lists unnecessary for static analysis of
Android apps. Therefore, it appears that white lists are still useful
for differentiating these FQCNs from developer and library code.

3 DATASET CONSTRUCTION METHODOLOGY

This section presents our methodology to build AndroLibZoo.
Hypotheses: Our hypothesis is that: ① the majority of Android
app developers rely on Android Studio and Gradle to build their
apps; ② that Gradle in turn relies on Maven and Google to re-
trieve libraries [12, 13]; and ③ open-source Android apps can bring
valuable information about the library used in apps, thanks to the
availability of configuration files.

Based on these hypotheses, we set up a straightforward approach
that can be seen in Figure 2. Our approach involves two main steps:
① extracting libraries from the Maven and Google’s Android li-
brary repositories; and ② extracting libraries used in open-source
projects. Maven is a widely used tool for managing dependencies
and building Java-based projects, and the Maven repository is a cen-
tral location where developers can find and share libraries. Google’s
Android library repository is a collection of Android libraries avail-
able through the GoogleMaven repository. In the following sections,
we explain how we proceed to build AndroLibZoo.

3.1 Mining repositories

This section details how we obtained the first portion of our dataset
by leveraging public library repositories. Our process is divided
into two steps: ① obtaining package names from the repositories.
② gathering transitive dependencies from the package names.

3.1.1 Package Name Collection. This section explains how we col-
lect package names from Maven and Google repositories.
Maven. First, we download the Maven index file (updated weekly)
and the Maven Indexer Command Line Interface (CLI) tool which
are available publicly. The Maven index is a file created using the
Lucene library [7] and contains metadata about the artifacts avail-
able in the Maven repository. The Maven Indexer CLI is a tool used
to extract this file. Once the Maven index file is extracted, we use a
Java program of our own, called SearchLuceneIndex, to extract all
the groupIds from the index. At the time of writing, our list from
the Maven repository contains a total of 69 316 entries.



AndroLibZoo: A Reliable Dataset of Libraries Based on Software Dependency Analysis

com.android.tools:sdk-common:22.9.0
\- com.android.tools:sdklib:22.9.0

+- com.android.tools:dvlib:22.9.0
| \- com.android.tools:common:22.9.0

| \- com.google.guava:guava:15.0
+- org.apache.httpcomponents:httpclient:4.1.1
| +- org.apache.httpcomponents:httpcore:4.1
| +- commons-logging:commons-logging:1.1.1
| \- commons-codec:commons-codec:1.4
+- com.android.tools.layoutlib:layoutlib-api:22.9.0
| \- net.sf.kxml:kxml2:2.3.0
+- org.apache.httpcomponents:httpmime:4.1
\- org.apache.commons:commons-compress:1.8.1

Figure 3: Dependency tree of the com.android.tools.sdk-

common library version 22.9.0.

Google.We could extract a total of 235 libraries by accessing the
Maven Google repository. Once we have obtained the package
names from both the Maven repository and the Maven Google
repository, we merge the two lists into a single list, eliminating any
duplicate entries. This results in a list of 69 535 package names.

3.1.2 Transitive Dependency Extraction. Libraries often rely on
other libraries known as transitive dependencies. For example, the
com.android.tools.sdk-common library in version 22.9.0 has 12
transitive dependencies. Figure 3 shows the dependency tree of this
library. To create a comprehensive and up-to-date set of libraries,
it is important to consider these transitive dependencies.

We used the mvn utility (from Maven) to build a given project’s
dependency tree. However, since our dataset is made of libraries (i.e.,
package names) and not actual development projects, getting the de-
pendency trees from the libraries is not trivial. We implemented the
following strategy. First, from the maven index, we obtained all arti-
facts in the form of the artifactIds (e.g., com.example) concatenated
with groupIds (e.g., MyLibrary) and versions (e.g., 1.0) to get the real
library names, resulting in a list of 10 069 375 unique libraries. We
considered all available versions for each library because transitive
dependencies can differ from one version of a library to another.
Then, for each library, we generated a pom.xml file with a dummy
project and the library as a dependency of the project. We then
launched the mvn dependency:tree command to get the list of all
transitive dependencies of the library. Obtaining transitive depen-
dencies for all libraries in our dataset is computationally intensive.
With a total of 10 069 375 libraries, extracting transitive dependen-
cies for each library would have taken an unreasonable amount
of time. Therefore, we set a timeout of 30 seconds for each call
to the mvn dependency:tree command. Even with this timeout,
9 312 664 (i.e., 92.5%) dependency trees were successfully built, and
the process still required 21 days of computation using 70 instances
in parallel on a Debian server with an AMD EPYC 7552 48-Core
Processor CPU with 96 cores and 630GB of RAM. Then, we parsed
the dependency trees generated and built a list of 15 089 additional
libraries with any duplicate removed. It should be noted that this
number (i.e., 15 089) was reached long before (after only 10 days) the
9 312 664 dependency trees were built. Finally, we merged this list
with the one generated previously, and we removed any duplicates,
resulting in a final list of 69 877 package names.

3.2 Mining open-source Android projects

Open-source projects provide valuable information about the li-
braries, relying on various third-party libraries to provide specific
features and functionality. In the following, we describe the process
for extracting lists of libraries from open-source projects.

We first obtained a list of open-source Android projects by down-
loading all apps in AndroZoo that were collected from the F-Droid
repository. At the time of writing, this represented 4464 apps. We
then used the F-Droid website to crawl the source code links for
these apps and attempted to clone the repositories. Out of the 4464
apps, we could successfully clone 3425 projects (some reasons why
some repositories cannot be cloned involve repositories that do not
exist anymore, or the "git clone" command cannot work for, e.g.,
svn repositories, our prototype currently ignores non-git reposito-
ries). Next, we searched the build.gradle files available in these
projects and extracted information about the libraries used. Specif-
ically, we searched for the Gradle commands implementation,
classpath, and compile, commonly used to declare dependencies.
After parsing the build.gradle files and extracting the relevant
information, we obtained a list of 463 unique libraries, which brings
our total count of libraries to 69 980 after deduplicating.

To obtain a list of libraries as comprehensive as possible, it is not
enough to consider libraries explicitly imported in the build.gradle
files of the app projects. It is also necessary to consider library repos-
itories (other than the default Maven and Google) declared in the
build.gradle files and use this information to search for additional
libraries. This process led to two additional repositories: jcenter
and gradlePluginPortal. However, we found jcenter is deprecated
and all its libraries are now in the Maven repository [14], which we
have already mined. The gradlePluginPortal website proved to be a
valuable resource. We crawled the gradlePluginPortal website, com-
prising 656 pages at the time of writing, and obtained an additional
list of all package names available. This led to the discovery of
6515 libraries, which we added to our list after removing potential
duplicates and led to a total of 76 007 libraries.

3.3 Refinement

We have designed a refinement process to remove unnecessary
package names from the list of third-party libraries. This process
helps ensure that the list is as concise as possible. For example, if
the list contains the package names “com.example.subpackage" and
“com.example", we would only keep “com.example" because this
would be sufficient for identifying “com.example.subpackage.My-
Class" as a library in an app. This is done by iterating over the list
of package names and checking whether any element 𝑒1 in the list
starts with another element 𝑒2 in the same list. If this is the case,
the element 𝑒1 is removed from the list. This process is repeated
until no more changes are made to the list. Overall, our refinement
process yields a list of 34 813 package names by discarding 41 194
of them (i.e., 76 007 − 34 813). Table 1 shows the details of all the
steps of our methodology with the number of libraries collected.

4 DATASET DESCRIPTION

In this section, we describe our dataset. AndroLibZoo contains
1210 unique roots. A root refers to the first element in a package
name. For example, in "com.example.mypackage", "com" is the root.



Jordan Samhi
𝛼
, Tegawendé F. Bissyandé

𝛽
, Jacques Klein

𝛽

Table 1: # of libraries after each step (OS = open-source)

Source
Maven 69 316
Google +235 → 69 535
Transitive Dep. +15 089→ 69 877
OS imports +463 → 69 980
gradlePluginPortal +6515 → 76 007
After Refinement 34 813

each resulting number is given after removing duplicates

Table 2: Number of package names per field inAndroLibZoo

Fields Count Fields Count
with 1 field 732 with 6 fields 134
with 2 fields 17 172 with 7 fields 40
with 3 fields 13 086 with 8 fields 26
with 4 fields 2979 with 9 fields 8
with 5 fields 634 with 10 fields 2
Total 34 813

We also collected data on the number of fields in the apps’ pack-
age names in our dataset. A field refers to a dot-separated element in
a package name. For example, in "com.example.mypackage", there
are three fields: "com", "example", and "mypackage". Results are
visible in Table 2. There are 732 package names with only one field,
17 172 package names with two fields, etc.

There are significantly fewer package names with four or more
fields. The number of package names with one field is relatively low
compared to the others. This suggests that many package names
in the dataset follow a standard naming convention with a domain
name followed by one or more subpackages. The presence of pack-
age names with four or more fields may indicate the use of more
complex or specialized naming conventions.

Table 3 presents the top 10 most frequent roots and the top 10
most frequent fields. In the first two columns, we see that “com" is
by far the most frequent root, with more than 13 000 occurrences.
The second most frequent root is “org", with 5450 occurrences. In
the second two columns, representing the most frequent fields,
including the roots, we see that “com" field is still the most frequent.
The second two columns do not differ much from the first two
columns, except for the field “gradle" that now appears. This could
indicate that Android libraries are prevalent (often built with gradle).
It is confirmed in the last two columns, representing the most
frequent fields without the roots, in which we see that “gradle“, and
“android“ fields are the most frequent, with 680 and 443 occurrences
respectively. After “gradle" and “android", the third most frequent
field is “maven", with 352 occurrences. We see a shift in the most
prevalent fields. Instead of roots, we now see fields such as “sdk",
“maven", “plugin(s)", “api", and “tools". This may be indicative of the
types of libraries. Overall, the results suggest that most libraries are
from the “com" domain and Android libraries are well represented.

5 FUTURE RESEARCH QUESTIONS

This dataset opens avenues for several analyses. This section draws
three research questions that this dataset could be used to address.

Table 3: Top 10 roots and fields present in AndroLibZoo

Top 10 roots Top 10 most used fields Top 10 most used fields w/o roots

Root Count Field Count Field Count

com 13 514 com 13 844 gradle 680
org 5450 org 5519 android 443
io 2630 io 2646 maven 352
net 1651 net 1704 com 330
de 1287 de 1288 plugins 269
cn 784 cn 784 sdk 267
dev 562 gradle 697 plugin 258
me 548 dev 575 co 244
eu 329 me 557 tools 164
se 304 co 460 api 153

Research Question 1: How does AndroLibZoo compare with state-

of-the- art approaches? With this RQ, AndroLibZoo can be com-
pared to existing techniques such as Li et al. [16] or Ma et al. [19].
Researchers can assess their comprehensiveness and precision.
Research Question 2: To what extent can AndroLibZoo be useful

and effective for static analysis? This RQ would evaluate the impor-
tance of AndroLibZoo. Researchers can extract all packages from
a dataset of apps and check the number of packages filtered using
AndroLibZoo. This quantity can then be compared with the same
approach using existing lists or more straightforward approaches,
such as only considering the apps’ package names to filter libraries.
Research Question 3: Can AndroLibZoo improve the analysis

performance of existing static analysis tools? With this RQ, An-
droLibZoo can be used within existing static analyzers to check
whether their performances, in terms of scalability and precision,
is improved or not.

6 LIMITATIONS

One limitation of our work is that we did not consider all poten-
tial sources of third-party libraries publicly available. While we
extracted libraries from Maven and Google’s repositories, as well
as open-source Android projects, there may be other sources of
libraries. This limitation is mitigated by the fact that given our
hypothesis, we believe that the sources of libraries we relied on are
representative of how developers build apps in general.

Another limitation is that we only considered a subset of open-
source Android projects when extracting libraries. While we used
the AndroZoo and the F-Droid datasets as sources of open-source
projects, there are likely additional open-source projects available.

Another limitation of our work is that our list of libraries is only
designed to match non-obfuscated libraries. Our study has shown
that this limitation is also mitigated (cf. Figure 2) since the majority
of package names in Android apps are not obfuscated. Besides, the
detection of obfuscated libraries is another research direction that
is actively being explored by the literature [5, 25, 30].

7 CONCLUSION

In this paper, we presented an approach for automatically generat-
ing an accurate and up-to-date white list of third-party libraries that
can serve the research and practitioner communities. Our dataset,
AndroLibZoo, contains 34 813 package names which, by construc-
tion, only represent libraries, and is meant to evolve.



AndroLibZoo: A Reliable Dataset of Libraries Based on Software Dependency Analysis

REFERENCES

[1] Aafer, Y., Du, W., and Yin, H. Droidapiminer: Mining api-level features for
robust malware detection in android. In Security and Privacy in Communication

Networks (Cham, 2013), T. Zia, A. Zomaya, V. Varadharajan, and M. Mao, Eds.,
Springer International Publishing, pp. 86–103.

[2] Allix, K., Bissyandé, T. F., Klein, J., and Le Traon, Y. Androzoo: Collecting
millions of android apps for the research community. In Proceedings of the 13th

International Conference on Mining Software Repositories (New York, NY, USA,
2016), MSR ’16, ACM, pp. 468–471.

[3] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon,
Y., Octeau, D., and McDaniel, P. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. ACM SIGPLAN

NOTICES 49, 6 (June 2014), 259–269.
[4] Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S.,

and Bodden, E. Mining apps for abnormal usage of sensitive data. In Proceedings

of the 37th International Conference on Software Engineering - Volume 1 (2015),
ICSE ’15, IEEE Press, p. 426–436.

[5] Backes, M., Bugiel, S., and Derr, E. Reliable third-party library detection in
android and its security applications. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (New York, NY, USA, 2016),
CCS ’16, Association for Computing Machinery, p. 356–367.

[6] Ban, Y., Lee, S., Song, D., Cho, H., and Yi, J. H. Fam: Featuring android malware
for deep learning-based familial analysis. IEEE Access 10 (2022), 20008–20018.

[7] Białecki, A., Muir, R., Ingersoll, G., and Imagination, L. Apache lucene 4. In
SIGIR 2012 workshop on open source information retrieval (2012), p. 17.

[8] Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., and Yin, H. Auto-
matically Identifying Trigger-based Behavior in Malware. Springer US, Boston,
MA, 2008, pp. 65–88.

[9] Chen, K., Liu, P., and Zhang, Y. Achieving accuracy and scalability simulta-
neously in detecting application clones on android markets. In Proceedings of

the 36th International Conference on Software Engineering (New York, NY, USA,
2014), ICSE 2014, Association for Computing Machinery, p. 175–186.

[10] Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., and
Vigna, G. Triggerscope: Towards detecting logic bombs in android applications.
In 2016 IEEE Symposium on Security and Privacy (SP) (2016), pp. 377–396.

[11] Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R. Unsafe exposure analysis
of mobile in-app advertisements. In Proceedings of the Fifth ACM Conference on

Security and Privacy in Wireless and Mobile Networks (New York, NY, USA, 2012),
WISEC ’12, Association for Computing Machinery, p. 101–112.

[12] Gradle. Google maven repositoryhttps://docs.gradle.org/current/userguide/
declaring_repositories.html#sub:maven_google, 2022. Accessed December 2022.

[13] Gradle. Maven central repositoryhttps://docs.gradle.org/current/userguide/
declaring_repositories.html#sub:maven_central, 2022. Accessed December 2022.

[14] JFrog. Jcenter, https://developer.android.com/studio/build/jcenter-migration,
2023. Accessed Apr. 2023.

[15] Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer,
S., Bodden, E., Octeau, D., and McDaniel, P. Iccta: Detecting inter-component
privacy leaks in android apps. In Proceedings of the 37th International Conference

on Software Engineering - Volume 1 (2015), ICSE ’15, IEEE Press, p. 280–291.
[16] Li, L., Bissyandé, T. F., Klein, J., and Le Traon, Y. An investigation into the use

of common libraries in android apps. In 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER) (2016), vol. 1, pp. 403–
414.

[17] Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D.,
Klein, J., and Traon, L. Static analysis of android apps: A systematic literature
review. Information and Software Technology 88 (2017), 67–95.

[18] Li, L., Riom, T., Bissyandé, T. F., Wang, H., Klein, J., and Yves, L. T. Revisiting
the impact of common libraries for android-related investigations. Journal of
Systems and Software 154 (2019), 157–175.

[19] Ma, Z., Wang, H., Guo, Y., and Chen, X. Libradar: Fast and accurate detection
of third-party libraries in android apps. In Proceedings of the 38th International

Conference on Software Engineering Companion (New York, NY, USA, 2016), ICSE
’16, Association for Computing Machinery, p. 653–656.

[20] Maintainer, F. Flowdroid’s systemclasshandler class https://github.com/secure-
software-engineering/FlowDroid/blob/develop/soot-infoflow/src/soot/jimple/
infoflow/util/SystemClassHandler.java, 2023. Accessed January 2023.

[21] Samhi, J., Bartel, A., Bissyande, T. F., and Klein, J. Raicc: Revealing atypical
inter-component communication in android apps. In 2021 IEEE/ACM 43rd Inter-

national Conference on Software Engineering (ICSE) (Los Alamitos, CA, USA, May
2021), IEEE Computer Society, pp. 1398–1409.

[22] Samhi, J., Gao, J., Daoudi, N., Graux, P., Hoyez, H., Sun, X., Allix, K., Bissyandé,
T. F., and Klein, J. Jucify: A step towards android code unification for enhanced
static analysis. In 2022 IEEE/ACM 44th International Conference on Software

Engineering (ICSE) (Los Alamitos, CA, USA, May 2022), IEEE Computer Society,
pp. 1232–1244.

[23] Samhi, J., Li, L., Bissyande, T. F., and Klein, J. Difuzer: Uncovering suspicious
hidden sensitive operations in android apps. In 2022 IEEE/ACM 44th International

Conference on Software Engineering (ICSE) (Los Alamitos, CA, USA, May 2022),
IEEE Computer Society, pp. 723–735.

[24] Sun, X., Chen, X., Li, L., Cai, H., Grundy, J., Samhi, J., Bissyandé, T. F., and
Klein, J. Demystifying hidden sensitive operations in android apps. ACM Trans.

Softw. Eng. Methodol. (dec 2022). Just Accepted.
[25] Wang, Y., Wu, H., Zhang, H., and Rountev, A. Orlis: Obfuscation-resilient

library detection for android. In 2018 IEEE/ACM 5th International Conference on

Mobile Software Engineering and Systems (MOBILESoft) (2018), pp. 13–23.
[26] Wei, F., Roy, S., Ou, X., and Robby. Amandroid: A precise and general inter-

component data flow analysis framework for security vetting of android apps.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-

cations Security (New York, NY, USA, 2014), CCS ’14, Association for Computing
Machinery, p. 1329–1341.

[27] Zhan, X., Fan, L., Liu, T., Chen, S., Li, L., Wang, H., Xu, Y., Luo, X., and Liu, Y.
Automated third-party library detection for android applications: Are we there
yet? In 2020 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE) (2020), pp. 919–930.
[28] Zhan, X., Fan, L., Liu, T., Chen, S., Li, L., Wang, H., Xu, Y., Luo, X., and

Liu, Y. Automated third-party library detection for android applications: Are
we there yet? In Proceedings of the 35th IEEE/ACM International Conference on

Automated Software Engineering (New York, NY, USA, 2021), ASE ’20, Association
for Computing Machinery, p. 919–930.

[29] Zhan, X., Liu, T., Fan, L., Li, L., Chen, S., Luo, X., and Liu, Y. Research on third-
party libraries in android apps: A taxonomy and systematic literature review.
IEEE Transactions on Software Engineering 48, 10 (2022), 4181–4213.

[30] Zhang, Y., Dai, J., Zhang, X., Huang, S., Yang, Z., Yang, M., and Chen, H.
Detecting third-party libraries in android applications with high precision and
recall. In 2018 IEEE 25th International Conference on Software Analysis, Evolution

and Reengineering (SANER) (2018), pp. 141–152.

https://docs.gradle.org/current/userguide/declaring_repositories.html#sub:maven_google
https://docs.gradle.org/current/userguide/declaring_repositories.html#sub:maven_google
https://docs.gradle.org/current/userguide/declaring_repositories.html#sub:maven_central
https://docs.gradle.org/current/userguide/declaring_repositories.html#sub:maven_central
https://developer.android.com/studio/build/jcenter-migration
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow/src/soot/jimple/infoflow/util/SystemClassHandler.java
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow/src/soot/jimple/infoflow/util/SystemClassHandler.java
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow/src/soot/jimple/infoflow/util/SystemClassHandler.java

	Abstract
	1 Introduction
	2 Motivation
	3 Dataset Construction Methodology
	3.1 Mining repositories
	3.2 Mining open-source Android projects
	3.3 Refinement

	4 Dataset Description
	5 Future Research Questions
	6 Limitations
	7 Conclusion
	References

