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State-of-the-art tools like FlowDroid have been proposed to detect data leaks in Android apps, but two main challenges persist:
@ false alarms and @ undetected data leaks. One contributing factor to these challenges is that a tool such as FlowDroid
relies on predefined lists of privacy-sensitive source and sink API methods. Generating such lists is'complex; incomplete or
inaccurate lists result in both false alarms (i.e., irrelevant data flows) and undetected data leaks. Additionally, data leaks are
highly context-dependent. For instance, GPS data flowing from a navigation app is expected, but the same flow in a calculator
app is suspicious. Even when FlowDroid identifies a source-to-sink path, it may not be relevant to privacy analysis, further
increasing false alarms.

To tackle these issues, we propose a novel approach named DamFlow, which, by combining backward taint analysis
with context-aware anomaly detection, prevents a “flood” of irrelevant data flows while at the same time finding data leaks
missed by existing approaches. Our evaluation demonstrates that DamFlow significantly reduces reported leaks per app while
uncovering previously undetected leaks, enhancing FlowDroid’s practicality for real-world data leak detection.

CCS Concepts: « Security and privacy — Domain-specific security and privacy architectures.
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1 INTRODUCTION

Ensuring the security and privacy of mobile applications (apps) has become paramount due to the widespread
use of mobile devices and the increasing number of apps employed by users every day. Various techniques
have been developed to analyze Android apps to meet this demand. Among these, FlowDroid [1], based on
Soot [2], represents one of the most influential state-of-the-art Android app static analysis tools. It focuses on
uncovering data leaks through static data flow analysis and modeling Android-specific challenges like the app
lifecycle. FlowDroid employs taint analysis, a specific type of data flow analysis. This technique involves tagging
(tainting) variables and monitoring their flow through the code to determine if data from a designated SOURCE
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method (or its derived data) is transmitted to a SINK method. A SOURCE method is an API function that accesses
privacy-sensitive information, while a SINK method is an API function that could potentially expose or mishandle
this data, such as sending it externally via a network connection. The accurate identification of sources and sinks
is essential for properly configuring data flow analysis tools such as FlowDroid and others.

In practice, these sources and sinks are usually identified through automated techniques such as the popular
and well-known SUSI approach [3] or the more recent DocFlow framework [4]. However, in real-world scenarios,
this approach (FlowDroid with a predetermined list of sources and sinks) is impractical due to two main issues:

(1) False alarms. Users are frequently overwhelmed by a “flood” of reported data leaks (sometimes hundreds
per app), most of which are irrelevant to the problem at hand. By irrelevant data flows, we mean that while
FlowDroid correctly identifies data flowing from a SOURCE to a SINK, the flow is irrelevant to security
and privacy concerns and does not constitute a real data leak. This issue arises when the SOURCE is not
considered relevant in the context of the analysis.

(2) Missed Data Leaks. A predetermined list of sources and sinks may be incomplete, leading to missed
data leaks. By missed data leaks, we mean that data flows from a SOURCE to a SINK, but FlowDroid fails to
identify it because the SOURCE, the SINK, or both are absent from the predetermined list.

In this paper, we make FlowDroid more practical by proposing DamFlow, a novel approach that prevents a

“flood” of irrelevant data flows while simultaneously reducing missed dataleaks. This is‘achieved by combining
backward taint analysis and context-aware anomaly detection. Next, we describe our core insights regarding
both goals.
On the need to perform Backward Analysis: Generating lists of sources and sinks is not trivial [5]. The
core challenge lies in distinguishing, a priori, between privacy-sensitive sources and non-privacy-sensitive
APIs [6]. Approaches that generate lists of sources and sinks for data leak identification, such as SUSI, often
misclassify many non-privacy-sensitive Android API methods as sources, resulting in numerous irrelevant
data flows [6—9]. Moreover, since these lists are generated automatically, they may overlook some sources
that should instead be considered. For example, the list generated by DocFlow excludes API methods like
“<android.telephony.gsm.GsmCellLocation: int getCid()>”, which retrieves the cell ID (CID) of the de-
vice’s current GSM location. This information is privacy-sensitive, as it can reveal the device’s approximate
physical location, posing a potential data leak risk.

Recognizing the challenges in compiling an exhaustive and precise list of privacy-sensitive sources, we shift
our focus toward reimagining the analysis framework itself, thereby eliminating the need for such a list. We adopt
a fundamentally different strategy that abandons the traditional notion of sources entirely. More specifically, our
approach starts a backward taint analysis from a set of pre-defined SINK methods. Hence, our approach requires a
list of sinks, but no sources. We argue that, while it is not trivial to distinguish between privacy-sensitive sources
and non-privacy-sensitive APIs, sinks do not require a notion of sensitivity. Sinks can indeed be more clearly
defined as Android API functions that send out one or more types of data [6]. More precisely, sinks make the
data available outside the scope of the app, e.g., for other apps or remote servers.

As an example, a SINK would look something like:

<android. telephony.ims.stub.ImsSmsImplBase: void sendSms()>
On the contrary, it is difficult to determine a priori if the method
<android.net.nsd.NsdServiceInfo: java.lang.String getServiceName()>

which is considered a SOURCE by SUSI, is truly a SOURCE.

As we show in our pre-study in Section 2, identifying sinks is indeed easier than identifying sources. Recall
that sinks are functions that initiate network connections, send SMS messages, or access external storage, which
are well-documented and are unrelated to the high-level notion of “privacy”. It is important to note that while
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our approach is based on the backward taint analysis implementation of FlowDroid [10] and focuses exclusively
on Android APIs, this methodology can be generalized to all backward data flow trackers.

By performing the backward taint analysis starting from a well-defined list of sinks, our approach computes all
the data flows for which the data ending up in the sinks originates from an Android API method. This technique
allows us to reduce the false negatives by catching all potential sources of data flowing to sinks since we do not
rely on pre-determined lists of sources.

On the need to perform Context-Aware Anomaly Detection: We then utilize context-aware anomaly
detection, tailored to the app’s category, to reduce false alarms by distinguishing actual data leaks from irrelevant
flows.

Specifically, our approach uses One-Class Support Vector Machine (OC-SVM) [11], trained on the data flow
pairs extracted from the app, to perform anomaly detection based on the app’s category.

This prevents us from misclassifying normal data flows as leaks by considering the app’s expected behavior.
Consider, for example, a navigation app sending the device’s location to a remote server. In its normal configuration,
FlowDroid will correctly report this as a data leak. The flow, however, is irrelevant as transmitting the device’s
location can be considered normal behavior for a navigation app. Conversely, if a similar data flow is found inside
a calculator app, there is a high probability that the app contains a real data leak, as the data flow is abnormal in
the context of a calculator app. Note that we consider the app in isolation and do not tackle the question of how
the receiving server handles the data.

While our approach is not the first to use context-aware anomaly detection in the context of data flow analysis,

existing approaches typically rely on traditional list-based methods: For example, AnFlo [12] detects anomalous
data flows in Android apps by grouping trusted apps based on functionality and comparing new apps to learned
patterns. Other approaches, such as MudFlow [13], are designed for specific tasks like malware detection. In
contrast, to the best of our knowledge, DamFlow is the first approach aimed at detecting data leaks without
requiring a pre-defined list of sources, while still being a general solution that enhances FlowDroid’s performance
for general data leak identification purposes.
Evaluation & Contributions: We evaluated our approach, DamFlow, against FlowDroid when used with a
pre-determined list of sources and sinks, i.e., in the “traditional way”. We utilized the lists generated by the
most popular approach, SUSI [3], as well as_the list generated by DocFlow, a novel technique proposed by
Tileria et al. [4], which derives taint specifications directly from platform documentation and has been shown
to outperform SUSI [4]. Our-approach significantly reduced the number of data leaks reported per app while
simultaneously identifying data leaks that were missed by existing approaches, making FlowDroid more practical
for identifying data leaks in real-world scenarios. We then compared our approach with AnFlo, which also employs
a context-aware method for detecting anomalous privacy-sensitive data flows but still relies on a predetermined
list of sources and sinks [12], demonstrating how our method outperforms it. Our main contributions can be
summarized as follows:

e We propose DamFlow, a novel approach that prevents a “flood” of irrelevant data flows while also
avoiding missed data leaks that can occur due to an incomplete predetermined list of sources and sinks,
relying on a combination of backward taint analysis and context-aware anomaly detection. To the best of
our knowledge, DamFlow is the first approach to detect data leaks without needing a well-defined list of
sources.

e We evaluated our approach against FlowDroid when using a pre-determined list of sources and sinks and
demonstrated that DamFlow drastically reduces the number of returned data flows by around 92% while
simultaneously finding more data leaks.

e We compared our approach to AnFlo, another context-aware method aimed at detecting abnormal data
flows, demonstrating how our method outperforms it.

ACM Trans. Softw. Eng. Methodol.



4 « Alecciet al.

e We publicly release DamFlow and all our artifacts at:

https://anonymous.4open.science/r/DamFlow-777

2 MOTIVATIONS

FlowDroid’s effectiveness in real-world data leak detection is limited when using a pre-defined list of sources and
sinks. It often produces too many alerts, most of which are irrelevant data flows rather than actual leaks, and it
can also miss genuine leaks due to an incomplete list.

In the literature, several automated techniques for identifying sources and sinks have been proposed [3, 4,
6, 14-16], as the vast number of Android API methods available to developers makes manual classification
impractical [6]. One of the most popular and well-known approaches is SUSI, a feature-based machine-learning
method for identifying sources and sinks in the Android framework. Studies have demonstrated that SUSI often
misclassifies non-privacy-sensitive Android API methods as sources, leading to irrelevant data flows [6—9]. Luo
et al. found that this irrelevant flow rate could reach 80%, undermining tools like FlowDroid in identifying data
leaks [9]. Numerous attempts to refine sources and sinks lists for privacy analysis [3, 4, 6, 14-16], along with
recent findings from Sambhi et al. [6], underscore the challenge of creating accurate lists.

This complexity has prompted us to reconsider current methods, opting instead for a backward taint analysis

approach that starts with a set of well-defined sinks and uses context-aware anomaly detection based on the two
motivations explained hereafter.
We hypothesize that sinks are easier to identify than sources. The rationale is that a source is defined as a
method providing privacy-sensitive data. The notion of sensitivity is key:to this definition of source. However,
sensitivity is a subjective notion on which we can disagree: John finds that this method X is privacy-sensitive, but
not Elena. In contrast, sinks do not involve any notion of sensitivity as they are defined as Android API functions
that send out one or more types of data [6], and sending data out can be factually determined.

To validate this hypothesis, we conducted a survey in which participants were asked to label a list of 100
Android API methods as either SOURCE, SINK, or NEITHER. The goal of this analysis is to measure the level of
agreement among respondents regarding the classification of Android methods. We created the list of 100 Android
API methods as follows: 50 were chosen randomly from all Android API methods, 25 were selected randomly
from the list of sinks generated by SUSI, and 25 were chosen randomly from the list of sources generated by
SUSL If we had simply collected 100 random Android API methods, we likely would have ended up with a list
predominantly consisting of methods that are neither sources nor sinks. Note that we do not assume the SUSI
labels to be fully correct.

The survey was then distributed to 43 grad students, who were enrolled in a Program Analysis course. To
quantify the level of agreement among respondents in classifying Android methods into SOURCE, SINK, and
NEITHER categories, we computed an Agreement Score, calculated as follows:

# Most Assigned Label Counts — # Other Labels Counts

Agreement Score =
& # Total Responses

This metric effectively captures the extent to which the majority label stands out in comparison to other responses,
rather than merely considering the count of the most frequently assigned label. Indeed, a larger gap between these
counts indicates a stronger consensus among respondents (e.g., a score of 100% reflects complete agreement),
whereas a smaller gap suggests less agreement. Figure 1 shows the average agreement score for each label.

ACM Trans. Softw. Eng. Methodol.
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Fig. 1. Average Agreement Score across 100 Android APl methods.

As can be observed from the plot, the percentage agreement score on sinks is more than double that of sources,

demonstrating that sinks are indeed easier to define than sources. This result is a strong motivation for our
approach, which is based on backward taint analysis requesting only a list of sinks and no sources.
The context of the analyzed app should be considered. The second issue with FlowDroid’s usability is that it
often reports many data flows as data leaks that are actually irrelevant to privacy analysis when the context of
the analyzed app is actually taken into account. While evaluating our approach and comparing it against the state
of the art, we identified a weather app (com.accurate.weather.forecast.live) as a concrete and suitable example.
Running FlowDroid with the list of sources and sinks generated by DocFlow returns a flow originating from
the method <android.location.Location: getlLatitude()>, which retrieves the device’s GPS coordinates.
However, even though FlowDroid reports this as a data leak, this data flow does not constitute a real data leak, as
accessing the device’s location can be considered normal behavior for a weather app. Later in this paper, we will
show how our approach, DamFlow, is capable of filtering out such irrelevant data flows.

To address this issue, we drew inspiration from CHABADA by Gorla et al. [17], which categorizes Android
apps based on their descriptions and employs multiple unsupervised One-Class Support Vector Machine (SVM)
anomaly detection models to differentiate between normal and abnormal API usage patterns. Similarly, we
decided to categorize apps and train multiple category-based anomaly detection models to distinguish between
relevant and irrelevant data flows based on the app’s category.

3 BACKGROUND

In this section, we describe Backward Taint Analysis and Anomaly Detection, the two main techniques we use in
combination in our approach, DamFlow.

Backward Taint Analysis: Taint analysis is an instance of data flow analysis that tracks the movement of
particular values throughout a program. A variable V becomes tainted when it is assigned a value from designated
functions known as sources. This taint spreads to other variables V"’ if they obtain a derived value from V. When
a tainted variable is passed as an argument to specific functions called sinks, it means that at runtime, we might
have a leak. In this paper, we rely on backward taint analysis which operates inversely compared to forward
taint analysis. It traces from sink methods backward through the program to identify which variables or inputs
could potentially contribute to data reaching these points.

Anomaly Detection: When analyzing data, anomaly detection involves identifying data points that exhibit a
substantial difference from the majority of data within the same class. Various techniques, such as One-Class
Support Vector Machine (OC-SVM) [11], which we use in our paper, have been proposed for this purpose [18].
The resulting trained model can then be used to predict whether a new sample can be considered an anomaly
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with respect to the initial group of elements. We rely on multiple category-based OC-SVM models to filter out
irrelevant data flows from FlowDroid’s output.

4 APPROACH

Goal: Our approach aims to improve the usability of FlowDroid in identifying data leaks in real-world scenarios
by @ reducing the number of irrelevant data flows typically returned (i.e., reducing false alarms) and @ avoiding
missed data leaks that can occur due to an incomplete predetermined list of sources and sinks (i.e., reducing false
negatives).

Intuition: As previously introduced, our idea involves starting with a set of well-defined sink methods and
retrieving all the Android Framework methods calls reachable through backward taint analysis for a given app,
without the need for a list of sources. We then employ category-based anomaly detection to accurately spot
data leaks and prevent normal (irrelevant) data flows from being mistaken for data leaks. This prevents the
misclassification of normal behavior, like location-related data flows in navigation apps, as data leaks.

App Categorization For our context-aware anomaly detection, we utilize apps belonging to the same “category,”
defined as a group of apps that share a common purpose and similar functionalities, following the motivation
introduced in Section 1 and Section 2. One might initially consider using the Google Play Store’s app categories;
however, these are often too broad and inconsistent [17, 19-22] to be reliable for fine-grained anomaly detection.
To overcome this limitation, we rely on description-based categorization, which allows for a more precise
grouping of apps. In particular, we adopt the G-CatA approach [19], which categorizes apps based on semantic
features extracted from their descriptions. G-CatA has been shown to achieve a high Adjusted Rand Index (ARI)
score of 0.91—indicating near-perfect categorization performance and outperforming existing description-based
categorization approaches [19].

Nonetheless, since even a small categorization error can introduce bias and affect downstream results, we

first evaluate DamFlow in a controlled experimental setting (RQ1-RQ4). Specifically, we use ANDROCATSET, a
manually labeled ground-truth dataset [19] consisting of 5000 benign Android apps across 50 distinct categories
(e.g., calculators, navigation, weather). This clean dataset-allows us to isolate and measure the effectiveness of our
backward taint analysis and category-based anomaly detection without the confounding effects of categorization
noise. Since the apps are benign, we assume they reflect typical behavior within each category—for example,
location-related data flows are expected in navigation apps. However, we acknowledge that this setting does
not fully represent real-world deployment, where the category of a new app is typically unknown. To address
this, we also evaluate DamFlow in a realistic scenario (RQ5) using a second dataset of real-world apps without
predefined categories. In'this setting, we apply the previously mentioned G-CatA approach [19] to automatically
assign each app to a.category prior to anomaly detection. This allows us to demonstrate DamFlow’s applicability
in practical, real-world conditions.
Overview: In Figure 2, we provide an overview of our approach. The lower part illustrates the Application Phase,
which includes all the steps executed whenever a new app is given as input to be analyzed. In contrast, the upper
section of Figure 2 represents the Training Phase, which is performed only once to train multiple category-based
anomaly detection models.

In our controlled experiments, we rely on a pre-categorized ground-truth dataset, so there is no need to
categorize apps during either the training or application phases—each app’s category is already known. However,
in a real-world setting, the DamFlow pipeline would require an additional preliminary step to categorize incoming
apps before analysis. This categorization can be performed using automated tools such as G-CatA [19], which
infer app categories based on the app description.

Both phases can be divided into three key subphases: Backward Taint Analysis, Embedding, and Anomaly
Detection. In the following subsections, we will explain them in more detail.

ACM Trans. Softw. Eng. Methodol.
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Fig. 2. DamFlow Approach Overview.

4.1

Our first step consists of performing backward taint analysis starting with a predefined list of sinks. To achieve
this, we developed a custom Java program using FlowDroid’s backward data flow implementation [10].

The need for backward analysis was extensively discussed in Sections 1 and 2. We fundamentally reconsider
the existing approaches and rely on backward taint analysis, starting only from a list of well-defined sinks. This
approach avoids the difficult task of identifying a predefined list of sources and instead focuses on the clearer
definition of sinks.

The sink list used in our analysis was originally developed by Sambhi et al. [6] via a rigorous manual labeling
process involving two expert annotators, who achieved full agreement on 130 Android API sink methods such as
sendTextMessage() in android. telephony.SmsManager and similar.

Note that when performing the backward analysis, FlowDroid computes the data flow pairs for which the

data ending up in the sink originates from an Android API method. In other words, in an obtained data flow pair
(SOURCE, SINK), both SOURCE and SINK are Android API methods.
FlowDroid Configuration: First, we configured the taint analysis to run in the backward direction instead of
the default forward direction. FlowDroid provides various options for dealing with calls to library classes. Since
analyzing the Android framework implementation together with each app entails severe scalability issues, we
rely on StubDroid library models for the API instead [23].

We further apply an optimization to FlowDroid’s path reconstruction. By default, FlowDroid builds a taint
graph on the interprocedural control flow graph during its IFDS-based [24] taint analysis. In a subsequent step,
FlowDroid reconstructs paths through the taint graph to return paths as sequences of statements between source
and sink [25]. We found this additional step to be prohibitively expensive in computation time for some apps
in our data set. To alleviate this problem, we configured FlowDroid with a simpler post-processing of the taint
graph that only returns the links between sources and sinks (i.e., a data flow pair), without the statements along
the path.

We set a hard timeout of 12 hours for analyzing each app, resulting in 99% of ANDROCATSET being analyzed
within this time limitation. Note that 94% of the apps were analyzed in less than 2 hours. The 60 apps not analyzed
are excluded from the study.

Backward Taint Analysis

ACM Trans. Softw. Eng. Methodol.
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Output: The outcome of this initial phase is a list of data flow pairs for each app. Each data flow pair consists of
a SOURCE method and a SINK method. Recall that sources and sinks are calls to API methods in our model. The
collection of data flow pairs for an app can be represented as:

DataFlowPairs(app) = [(sources, sink; ), (sourcey, sinky), . . .]

Each pair is stored as a JSON object. Here is an example of a real data flow pair :

e SOURCE: <android.location.Location: double getlLatitude()>
e SINK: <android.telephony.SmsManager: void sendTextMessage()>

The pairs are next used to train anomaly detection models.

4.2 Embedding

Before the data flows extracted through backward taint analysis can be used to train anomaly detection models,
they first need to be converted into numerical representations. FlowDroid relies on Soot and its Jimple intermediate
representation [26], and hence a specific format for method signatures. The APIs that appear as sources and sinks
for a data flow are such method signatures in our case.

We embedded the SOURCE method signature and the SINK method signature, then concatenated their numerical
representations into a single array, resulting in an array with a length double that of the individual embeddings
generated by the model.

EMB(Pair) = [EMB;ource + EMBgink ]

We chose not to use traditional code embedding models such as Code2Vec [27], as there are none specifically
trained for Jimple. Instead, we opted for transformer-based models like CodeBERT [28], which better capture
contextual information and handle intermediate representations like Jimple more effectively. To avoid bias from
relying on a single model, we tested three different embedding techniques, detailed below:

(1) First, we decided to test CodeBERT [28],.a more “traditional” approach specifically trained for code. CodeBERT
learns representations directly from code tokens using Transformer-based models trained on large-scale code
repositories. This model generates 768-dimensional embeddings.

(2) Then, we chose to use one of the most popular transformer-based embedding models, text-embedding-3-
small by OpenAl [29], the creators of ChatGPT. This model can be accessed through the official OpenAl APL
Despite being primarily designed for text embedding, it can also be used to embed code, as suggested by the
official website. This model generates 1536-dimensional embeddings [30].

(3) Finally, since our second model is a paid text-embedding model, we decided to explore other free text-
embedding models. We referred to the Massive Text Embedding Benchmark (MTEB) Leaderboard on Hugging
Face [31]. At the time we started our experiments, the best-performing model on the MTEB Leaderboard
was SFR-Embedding-Mistral [32], which is based on Mistral-7B-v@.1 [33]. We selected this as our third
model. This model generates 4096-dimensional embeddings.

The outcome of this phase is a list of data flow pairs embedded in their numerical representations for each app.

DataFlowPairs(app) = [EMByairt, EMBpairz, - - -|

4.3 Anomaly Detection

The final step of the Training Phase involves training multiple category-specific anomaly detection models using
the embeddings generated in the previous phase.

Specifically, we train one model per app category (either the category from ANDROCATSET or the cluster
identified by G-CatA [19])

ACM Trans. Softw. Eng. Methodol.
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with the goal of learning to distinguish between normal and abnormal data flows within that category. We adopt
the One-Class Support Vector Machine (OC-SVM)[11] for this task, as it has demonstrated strong performance in
prior work on category-based anomaly detection[17, 34, 35]. In the case of our controlled experimental setting
(RQ1-RQ4), from the 5000 apps in ANDROCATSET (100 per category), we use 90% (i.e., 90 apps) for training each
OC-SVM model!. These trained models—one for each of the 50 categories—are saved locally using joblib [36]
and reused during the analysis of new apps.

During the Application Phase, a new app is first subjected to backward taint analysis and embedding. Next,
the appropriate OC-SVM model is selected based on the app’s category

(either directly provided in the case of ANDROCATSET or automatically inferred using G-CatA [19]). This model
then processes the embedded data flow pairs, filters out those considered category-normal, and returns only
those deemed anomalous—i.e., likely data leaks.

5 EVALUATION

This section evaluates our approach in two distinct settings: @ Controlled Setting: using a manually labeled
ground-truth dataset to isolate and assess the effectiveness of DamFlow without the influence of categorization
errors and @ Real-World Setting: applying DamFlow to real-world apps without predefined categories, where
categorization is performed automatically using G-CatA [19]. We define a set of research questions (RQs) for
each setting, as detailed below.

O Controlled Setting. Since we are, to the best of our knowledge, the first to attempt identifying data leaks
solely from sinks, our initial goal is to examine the effectiveness of relying on backward taint analysis using
a well-defined set of sinks. This involves investigating the intermediate results of DamFlow to reinforce the
motivation previously discussed in Section 2 by addressing the following questions:

e RQ1: For a given app, how many methods of the Android Framework are reachable from sink methods when
performing backward taint analysis?
e RQ2: How do these reachable methods differ across various categories of apps?

Secondly, we aim to evaluate our approach, DamFlow; as a standalone tool capable of detecting data leaks in
Android apps. Specifically, we seek to answer the following questions:

e RQ3: How does DamFlow perform compared to FlowDroid with a pre-determined list of sources and sinks?
e RQ4: How does DamFlow perform compared to other category-based approaches, such as AnFlo, for detecting
abnormal data flows?

® Real-World Setting. While the controlled setting offers clean comparisons, real-world scenarios require
app categorization at runtime. To simulate this, we consider a second dataset of Android apps that do not have
predefined category labels. For this setting, we integrate the G-CatA categorization approach [19] into the
DamFlow pipeline as a preprocessing step.

e RQ5: How does DamFlow perform when applied to real-world Android apps whose categories are inferred
using an automated categorization method (G-CatA)?

5.1 RQ1: Android APl methods reachable from sinks.

As described in Section 4.1, the first step of our training phase involves performing backward taint analysis using
only a set of well-defined sink methods, thereby completely eliminating the need for a list of sources.

After running the first step on the analyzed apps present in ANDROCATSET, i.e., 4940 apps (5000-60), we
examined the intermediate results of DamFlow, specifically the data flow pairs returned at the end of the

Due to timeouts during the taint analysis phase (cf. Section 4.1), some categories may include slightly fewer apps, with a minimum of 87 per
category. The evaluation set always includes 10 apps per category.
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backward taint analysis performed by FlowDroid. Upon analyzing these pairs, we found that, on average, only
233 distinct method calls of Android Framework methods are reachable backward from the sinks in a given app,
out of 14 520 distinct Android API method calls present on average in each app. This means that, on average, less
than 2% of the Android API method calls present in an app are actually reachable from the well-defined sink
methods.

Reachable Android APl method calls Android API method calls
15782
237
10° 10! 102 103 104 10°

Number of [reachable] Android APl method calls present per app

Fig. 3. Distribution of Android APl method calls (in violet) vs. reachable Android API"'Method calls (in yellow) per app.

Figure 3 illustrates the distribution of the number of Android API method calls in an app (top boxplot, in
violet). We compare this data to the distribution of the number of Android API method calls reachable from
the sinks per app (bottom boxplot, in yellow), using a logarithmic scale on the X-axis. The median values are
quite similar to the average values: 237 for the number of reachable Android API method calls and 15 782 for
the number of Android API methods. This indicates that there are not many outliers significantly skewing the
average values. Additionally, we note that there is a reduction of two orders of magnitude (and in some cases,
even three) when considering the reachable method calls. This highlights that the search space for data leaks is
considerably smaller than all the Android Framework method calls in a given app. This explains why our anomaly
detection is conducted specifically as a second step on the results of the backward taint analysis, rather than
being applied directly to all Android API method calls used in a given app.

Answer to RQ1: We found that less than 2% of the Android API method calls present in apps are actually
reachable backward from the well-defined sink methods.

5.2 RQ2: reachable Android API'methods across app categories.

While the first research question analyzed how many Android Framework method calls are reachable from
the sinks across the entire dataset, this RQ examines how they differ among different categories of apps in
ANDROCATSET.

Figure 4 presents a heatmap visualization that illustrates the pairwise overlap of Android API method calls
reached through backward taint analysis across 50 distinct categories of apps. Each cell in the heatmap represents
the degree of overlap (expressed through the pairwise Jaccard Index) between two categories, with darker cells
indicating a greater degree of overlap. For instance, let us consider a category X and another category Y, and let
My and My be the sets of Android API method calls reached through backward taint analysis for both categories
X and Y. The lower |[Mx N My| is, the lower the Jaccard Index and the brighter the color in Fig. 4.

As we can see across the heatmap, the Jaccard Index values are generally low (lighter), implying minimal
overlap across different categories. This observation highlights that, although the same list of sinks is used
for backward taint analysis, the methods generating the data reaching these sinks vary by category, thereby
reinforcing the rationale for a category-based approach.
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Fig. 4. Pairwise overlap of reachable Android APl method calls across the 50 distinct categories of ANDROCATSET.
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Fig. 5. Distribution of the number of data flows per category.

The differences among the various categories of apps are also illustrated in Figure 5, which shows the distribution
of the number of data flows found in each app by category. Each boxplot in the figure represents the distribution for
a single category. We can see that the number of data flows varies between categories, with some categories, such
as Messenger, containing significantly more data flows compared to categories like Calculators. This highlights
how certain types of apps are more prone to having Android API method calls reachable from sinks.
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Answer to RQ2: The Android API methods, which are reachable from sinks, have been shown to differ among
app categories, reinforcing the rationale for using a category-based anomaly detection

5.3 RQ3: Comparison with FlowDroid.

In this research question, we compare DamFlow with FlowDroid’s output when used in its normal settings i.e.,
with a predefined list of sources and sinks, referred to as our “baseline”. The goal is to determine whether our
approach can reduce the number of irrelevant data flows and to assess if DamFlow can identify leaked data missed
by FlowDroid due to limitations in the underlying analysis. We first present the raw results of our experiment,
followed by a qualitative analysis through manual inspection, as no ground truth data exists for this task.

To ensure a fair and controlled comparison, we decided to compare DamFlow against FlowDroid using the
same set of sinks as DamFlow, but with a traditional pre-determined list of sources. For sources, we use two
automatically generated lists: one produced by SUSI, the well-known approach proposed by Arzt et al.[3], and
the other by DocFlow, a recent technique developed by Tileria et al.[4] that extracts taint specifications directly
from platform documentation. The evaluation in [4] demonstrated that DocFlow outperforms SUSI, enabling a
more comprehensive security and privacy analysis of Android apps.

As a dataset, we use the remaining part of ANDROCATSET, i.e., 500 apps (10 for each of the 50 categories),
which we did not use for training the models and reserved specifically for evaluating our approach. We tested
DamFlow using all three embedding models introduced in Section 4.2. We refer to them as CB for CodeBERT,
GPT for text-embedding-3-small, and SFR for SFR-Embedding-Mistral. Table 1 displays the total number of
data flow pairs returned by each approach, along with the average and median values across the 500 analyzed

apps.

‘ # Data Flow Pairs

Approach ‘ Total Average per app Median
FlowDroid [DocFlow] | 36 196 104 86
FlowDroid [SUSI] 16 043 46 35
DamFlow [CB] 2732 8 6
DamFlow [GPT] 4632 13 10
DamFlow [SFR] 53623 140 130

Table 1. Number of data flow pairs returned per approach.

With the exception of SFR, which still returns a significant number of data flow pairs, DamFlow greatly reduced
the number of data flows reported to the user, especially when considering FlowDroid used with the DocFlow
list. Indeed, when compared to FlowDroid[DocFlow], the average number of data flow pairs returned per app
shows a significant reduction: 92.31% for CB and 87.50% for GPT. Even when considering the median number of
data flow pairs returned, the value is relatively high for the baseline (86), indicating that it is not just a few apps
returning many data flow pairs (which increases the average), but rather a general trend across all analyzed apps.
When compared with FlowDroid[SUSI], the reduction is 82.61% for CB and 71.74% for GPT.

This reduction is in line with our expectations, as a user relying on FlowDroid for data leak identification, such
as a security analyst, would no longer need to deal with the overwhelming number of 321 data flow pairs per
app (a ‘flood’ of 36 196 data flow pairs in total from our dataset) such as in the case of DocFlow list. However,
it remains crucial to assess whether the returned data flow pairs are irrelevant or represent actual data leaks,
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i.e., whether they are significant in the context of security analysis. On the other hand, computing the recall
of our approach—specifically, determining if it fails to identify data flow pairs found by FlowDroid[SUSI] and
FlowDroid[DocFlow]—is challenging due to the extremely high number of data flow pairs these tools return, as
we will better explain in Section 6.
Manual Inspection. To assess the presence of data leaks, we manually inspect the data flow pairs returned by
both the baseline approach and DamFlow. Given that manually inspecting all returned data flows across numerous
apps would be excessively time-consuming, we addressed this by randomly selecting a statistically significant
sample for each approach. This sampling was conducted with a confidence level of 95% and a confidence interval
of £10%. The first column of Table 2 shows the exact number of data flow pairs inspected for each approach. The
samples inspected are distinct subsets of data flow pairs for each approach.

For each inspected data flow pair, we assigned one of the following three labels based solely on the nature of
the source since all sinks are predefined high-quality sinks, as explained at the beginning of this Section. The
meaning of each label is explained below:

e EXPLICITLY RELEVANT: This label is assigned when the source explicitly performs an action directly
associated with privacy-sensitive data that could lead to a data leak. An example of this is the source method:
android.location.Location: double getlLatitude(). This method directly extracts privacy-sensitive lo-
cation information, which may result in a data leak.

e POTENTIALLY RELEVANT: This label is assigned when the source performs an action that may or may
not lead to a data leak depending on context (e.g., when reading something). For instance, the method
java.io.InputStream: int read() falls into this category. The potential for data leakage depends on the
data being read from the InputStream. Although the source is linked to a well-defined sink, the actual risk of
a data leak varies depending on the content read and how it is subsequently used or exposed.

e IRRELEVANT: This label is assigned when the source either (i) does not provide any meaningful information
(e.g., a Ul method such as <Canvas: int getWidth()>, which we found in the DocFlow source list), or (ii)
provides data that is aligned with the expected behavior of the app and does not represent a privacy risk. In
both cases, the source is not associated with privacy-sensitive information that could result in a data leak.

Table 2 reports the results of our manual inspection.

‘ # Data Flow Pairs

Approach ‘ Inspected Irrelevant P.relevant E.relevant
FlowDroid [DocFlow] 96 88 [92 %] 8 [8 %] 0[0 %]
FlowDroid [SUSI] 96 88 [92 %] 6 [6 %] 2 [2 %]
DamFlow [CB] 93 83 [89 %] 6 [7 %] 4[4 %]
DamFlow [GPT] 95 81 [85 %] 3[3 %] 11 [12 %)
DamFlow [SFR] 96 92 [96 %] 3[3 %] 1[1%]

Table 2. Results of our manual inspection of data flow pairs.

As shown in Table 2, FlowDroid [DocFlow] did not identify any explicitly relevant data flows, while Flow-
Droid [SUSI] identified only two. During our manual inspection of DocFlow’s results, we found that many
sources offer no meaningful information —for instance, <android.content.Resources: int getColor(int)>
or <android.view.Display: int getHeight()>.In contrast, our approach, DamFlow, achieved better results.
Specifically, manual inspection revealed that 12% of the data flows reported by DamFlow[GPT] were explicitly
relevant, compared to 4% for DamFlow[CB]. This demonstrates a reduction in the number of irrelevant data flows
compared to both baselines.
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While the absolute reduction in irrelevant flows shown in Table 2 may seem modest, it is important not to
interpret these results in isolation. Instead, they should be evaluated alongside the data presented in Table 1. As
we have consistently highlighted throughout this paper, our primary goal is to reduce the excessive number of
false alarms, thereby enhancing FlowDroid’s practicality for identifying data leaks. As a result, the output from
DamFlow is more actionable than that of FlowDroid when used in the “traditional” manner with a pre-determined
list of sources and sinks, such as SUSI and DocFlow. For instance, a user relying on FlowDroid for data leak
identification, such as a security analyst, would no longer need to handle the overwhelming number of 104 data
flow pairs per app (a ‘flood’ of 36 196 data flow pairs in total from our dataset), as is the case with FlowDroid
when using the list generated by DocFlow. Instead, by using DamFlow, they would get a significantly smaller
number of “high-quality” data flow pairs per app, typically no more than 20 (excluding SFR, which has shown
disappointing performance). This reduction, combined with the percentages of explicitly relevant data flow pairs
we found with manual inspection, shows how DamFlow greatly enhances the practical aspect of FlowDroid in
real-world scenarios addressing the issue of excessive false alarms.

Once again, we note that among the three embedding models we are using, SFR appears to be the least effective,

as it does not reduce the number of irrelevant data flows compared to the baseline. One possible reason could
be that SFR is primarily developed for text embedding tasks, whereas GPT embeddings have been shown to be
effective for code embedding tasks as well [30].
Sources missing from SUSI and DocFlow lists. So far, we have demonstrated how our approach can report
fewer data flow pairs to users while simultaneously identifying more explicitly relevant data flow pairs, thereby
helping to address the false alarms problem. However, as discussed-in Section 1, a pre-determined list of sources
and sinks may be incomplete, leading to missed data leaks (i.e., the false negative problem). For this reason, we
want to investigate whether DamFlow can also resolve this issue by identifying data leaks that are actually missed
when using a pre-determined list, such as those generated by SUSI and DocFlow.

Based on our manual analysis results, we examined-all explicitly relevant data flow pairs confirmed across the
three embeddings used in DamFlow [CB], [GPT], and [SFR]. Out of 16 total pairs, we checked if the sources of
these data flow pairs were included in the lists generated by SUSI and DocFlow. Our findings are as follows:

e We identified 2 sources not present in the DocFlow list:

— <android. telephony.gsm.GsmCelllLocation: int getCid()>

— <android.hardware.usb.UsbDevice: int getDeviceProtocol()>
e We identified 1 source missing from both SUSI and DocFlow lists:

— <java.util.Locale: java.lang.String getCountry()>

These findings suggest that DamFlow, which operates by beginning solely with a list of sinks, can identify new

sources not included in the SUSI and DocFlow lists. This capability supports our approach of relying exclusively
on sinks and working backward, effectively addressing the limitations of list-based methods like DocFlow and
SUSI, which may produce incomplete lists leading to false negatives.
A practical example: android.Location package. Similar to what the authors did in the DocFlow paper [4],
we focus on the Android.Location package as a case study and examine the results. This package provides a
popular API with many privacy-sensitive methods. Specifically, in our case, we aimed to observe how using
a category-based anomaly detection method has impacted the final results. We started by considering all the
data flow pairs returned by the Baseline approach and all the data flows returned by DamFlow (using GPT, as it
was the most effective embedding model). We retained only the data flow pairs where the source belongs to the
Android.Location package. Next, we analyzed the categories of the apps where location-related data leaks were
found. Table 3 displays the top 3 categories of apps, ordered by the number of location-related data flows.

From Table 3, we can observe that when using the baseline approach, location-based data flows are primarily
found in apps belonging to categories clearly related to location-based functionalities, such as HikingAndTrekking,
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‘ Category
Ranking ‘ FlowDroid[DocFlow] DamFlow [GPT]

#1 HikingAndTrekking Antivirus
#2 PublicTransit BuyAndRentHome
#3 Weather SmartHome

Table 3. Top 3 categories of apps ordered by number of location-related data flows.

PublicTransit, and Weather. In contrast, DamFlow identified location-related data flows in apps from categories
not typically associated with location data, such as Antivirus, BuyAndRentHome, and SmartHome. This validates
our decision to train multiple anomaly detection models tailored to different categories. As our goal is to filter out
normal data flows based on the app’s category, encountering location-related data flows in unexpected categories
is a positive indication that our method is working effectively.

To further assess the correctness of the filtering performed by DamFlow, we conducted a small-scale manual
analysis of data flows removed by anomaly detection in the three top categories of FlowDroid[DocFlow] in terms of
location-related flows: HikingAndTrekking, PublicTransit, and Weather, to check that we'do not remove relevant
flows (i.e., perform worse than FlowDroid[DocFlow]). For each category, we computed the set difference between
the flows before anomaly detection and those remaining after anomaly detection. We then randomly sampled the
removed flows using a 95% confidence level and +10% margin of error. The sampled flows were classified using
the same definitions introduced earlier in the section: EXPLICITLY. RELEVANT, POTENTIALLY_RELEVANT,
and IRRELEVANT. The results are summarized in Table 4.

‘ # Data Flow Pairs
Before After  Removed by

Category ‘ ‘Inspected Irrelevant P.relevant E.relevant

AD AD AD
HikingAndTrekking | 889 110 779 86 85 [99%] 1[1%] 0 [0%]
PublicTransit 1117 75 1042 89 88 [99%] 1[1%] 0 [0%)
Weather 5505 176 5392 95 95 [100%) 0 [0%) 0 [0%)

Table 4. Results of our manual inspection on a sample of data flow pairs removed by DamFlow through anomaly detection.
(A.D. = Anomaly Detection)

It can be observed that nearly all flows removed by DamFlow were irrelevant, with 99-100% of inspected flows
classified as such. No explicitly relevant flows were removed, and only a negligible number of potentially relevant
flows were filtered out (one flow each for HikingAndTrekking and PublicTransit). Both flows are actually related
to the read() method, which could potentially be more common in certain categories, causing the anomaly
detector to treat them as normal, whereas DamFlow focuses on detecting explicitly relevant flows. Further
discussion is provided in Section 6. These results suggest that DamFlow’s filtering step effectively removes
irrelevant flows while retaining relevant ones, providing additional evidence of correctness. This supports the
validity of our anomaly detection-based approach and reinforces the practical usefulness of the filtered outputs.
Runtime Performance Comparison. To evaluate whether DamFlow introduces significant overhead compared
to the baseline, we measured the analysis time of DamFlow against FlowDroid configured with the SUSI source
list, which is the most commonly used configuration in prior research. Indeed, SUSI has been FlowDroid’s
primary source list for nearly a decade and is widely used in both academic studies and practical applications [6],
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reflecting the scenario that a typical user would encounter. Figure 6 shows the distribution of elapsed times for
both approaches.

DamFlow

Approach

1A

SusI

0 2000 4000 6000 8000 10000 12000 14000 16000
Elapsed Time [seconds]

Fig. 6. Distribution of elapsed analysis time (in seconds) for DamFlow and FlowDroid[SUSI]. The red dashed line indicates
the median time for each tool.

Both tools exhibit a wide range of analysis times with some apps requiring substantially longer processing,

resulting in a long-tailed distribution. DamFlow shows a slightly wider concentration of runtimes between 1000
and 2000 seconds. However, the median elapsed times are comparable: 348.05 seconds for FlowDroid[SUSI] and
470.05 seconds for DamFlow. This modest increase in runtime is likely due to DamFlow performing backward taint
analysis from sinks, rather than relying on a predefined list of sources as FlowDroid[SUSI] does. Nevertheless, the
small overhead introduced by DamFlow can be considered acceptable given its significant benefits in reducing
irrelevant data flows.
LLMs as anomaly detectors. To compare with our OC-SVM-based approach, we tasked a large language model
(Llama3.1-405B) with directly identifying abnormal data flows based solely on its understanding of the app
category. We provided it with the data flow pairs and the app’s category. Note that the LLM was used as-is and
has not been specifically trained on data flows. We found that the LLM flagged many flows as abnormal, even
though they are actually expected for their respective categories. For example, it identified the sharing of device
location in navigation or weather apps as abnormal. A thorough analysis of an LLM-based variant of DamFlow is
left to future work.

Answer to RQ3: DamFlow significantly reduces the number of data flow pairs returned per app by up to 92%,
effectively filtering out irrelevant data flow pairs (false alarms problem) while simultaneously identifying data
flow pairs that FlowDroid misses when using a predetermined list of sources and sinks (false negative problem).

5.4 RQ4: Comparing DamFlow against AnFlo.

In RQ3, we compared DamFlow with FlowDroid using a traditional setup, which involves a pre-generated list
of sources and sinks. However, since our approach is context-aware—meaning it considers the category of the
analyzed app—our goal in this research question is to compare our tool with AnFlo, which also employs a context-
aware approach [12]. In their paper, Demissie et al. present a method for detecting anomalous privacy-sensitive
data flows in Android apps by grouping trusted apps based on functional categories and learning their typical
data flows. Anomalies are flagged when an app’s data flow deviates from those of trusted apps within the same
category, enhancing detection accuracy [12]. However, their approach differs slightly from ours in that they do
not report a list of data flows to the users, such as pairs of SOURCE and SINK methods. Instead, Android APIs
(both sources and sinks) are grouped according to the special permissions required for execution. For example,
all network-related sink functions—such as openConnection(), connect(), and getContent()—are modeled as
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Internet sinks because they all require the INTERNET permission to run. They achieved this classification using
the privileged APIs available from PScout [37]. As a result, their approach returns a list of outliers based on
permission pairs. For instance, according to their results, GPS data sent through the Internet (GPS — Internet) is
common for travel apps, but GPS data sent via Bluetooth (GPS — Bluetooth) is anomalous and flagged. Further
details on their approach can be found in their paper [12].

To compare DamFlow with their approach, we slightly modified their code so that AnFlo would return not only
a single permission pair (e.g., GPS — Internet) but a full list of anomalous data flow pairs, similar to DamFlow.
We then ran this modified version of AnFlo on the same set of 500 apps used for RQ3. The output of AnFlo is
reported in Table 5.

#Occurences ‘ Source ‘ Sink
3 <android.app.Activity: android.content.Intent getIntent()> <android.app.Activity: void startActivity()>
1 <android.net.ConnectivityManager: boolean isActiveNetworkMetered()> <android.content.Context: android.content.Intent registerReceiver()>
1 <android.app.DownloadManager: long enqueue()> <android.content.Context: android.content.Intent registerReceiver()>
1 <android.media.RingtoneManager: android.media.Ringtone getRingtone()> | <android.mediaRingtone: void setStreamType()>

Table 5. Output of AnFlo when used on our test set of 500 Android apps.

After analyzing 500 Android apps, AnFlo returned a list of 6 anomalous data flows across 6 different apps,
which is significantly lower than the results of both our approach and FlowDroid. However, this number is
somewhat consistent with their original paper, where they found only 25 abnormal data flows in approximately
600 apps. If we examine the nature of these reported data flow pairs, we can classify them as IRRELEVANT
according to the definition previously introduced in RQ3. We searched for these 6 data flow pairs in the results of
DamFlow[GPT], which represents our best approach, and did not find them. This indicates that our approach
successfully filtered out these irrelevant data flow pairs. On the other hand, AnFlo was unable to detect the 10
Explicitly Relevant and 3 Potentially Relevant data flow pairs that DamFlow[GPT] identified, and we manually
confirmed in RQ3, showing that AnFlo missed data flows that DamFlow successfully identified.

Answer to RQ4: DamFlow outperformed AnElo, another category-based approach, by identifying explicitly
relevant data flow pairs that AnFlo missed, while correctly filtering out irrelevant data flow pairs that AnFlo
included.

5.5 RQ5: DamFlow in areal-world scenario.

While the previous research questions (RQ1-RQ4) evaluate DamFlow in a controlled setting using a manually
categorized dataset; real-world applications typically lack such predefined labels. Therefore, the goal of RQ5
is to assess the practical applicability of DamFlow when app categories are unknown and must be inferred
automatically. To this end, we leverage the G-CatA approach [19], a description-based categorization method
shown to achieve high accuracy, to categorize apps prior to analysis. This research question investigates how well
DamFlow performs in this realistic scenario, bridging the gap between controlled experiments and real-world
deployment with a newly built dataset.

Since 2020, AndroZoo has also been collecting and sharing app metadata such as app descriptions [38] which
we need for the fine-grained automatic categorization. We therefore sampled apps from AndroZoo [39] from the
last five years—i.e. since the collection of descriptions began. To mirror the setting of RQ3, we randomly collected
4500 apps with a VirusTotal [40] score of zero to ensure they are benign and reflect expected behavior. We
then randomly selected an additional 500 apps as a test set, without placing any constraints on their VirusTotal
score, to better simulate a real-world scenario where suspicious apps may be encountered. We applied G-CatA to
categorize the apps in the training set and trained the respective OC-SVM models accordingly, identical to the
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setup used in the controlled setting. When analyzing the 500 test apps, we first assigned each app to a cluster
using G-CatA and then applied the appropriate category-specific OC-SVM model to perform anomaly detection.

As in RQ3, we compared DamFlow against FlowDroid configured with two pre-determined source lists—SUSI
and DocFlow—while using the same sink list as DamFlow. For this RQ, we used only the DamFlow[GPT] variant,
which previously demonstrated the strongest performance. The results are reported in Table 6.

‘ # Data Flow Pairs

Approach ‘ Total Average per app Median
FlowDroid [DocFlow] | 36219 90 47
FlowDroid [SUSI] 15006 37 26
DamFlow [GPT] 3194 8 4

Table 6. Number of data flow pairs returned per approach using real-world settings.

As Table 6 shows, DamFlow continues to drastically reduce the number of reported flows, even under real-world
conditions. Specifically, compared to FlowDroid[DocFlow], the average number of reported flows drops from 90 to
just 8—a 91.1% reduction. Compared to FlowDroid[SUSI], the reduction is 78.4%. These results closely match those
observed in the controlled setting of RQ3, where DamFlow[GPT] achieved 87.5% and 71.7% reductions, respectively.
This demonstrates that DamFlow’s filtering capabilities generalize well beyond the clean controlled environment,
and that using automatically inferred categories via G-CatA doesnot significantly impact effectiveness. We
then carried out a manual analysis using the same methodology described in RQ3. Specifically, we randomly
sampled data flow pairs for each approach, using a 95% confidence level and a £10% margin of error. The results
are reported in Table 7.

‘ # Data Flow Pairs

Approach ‘ Inspected Irrelevant P.relevant E.relevant
FlowDroid [DocFlow] 96 89 [93 %] 6 [6 %] 1[1 %]
FlowDroid [SUSI] 96 88 [92 %] 7[7 %] 1[1 %]
DamFlow [GPT] 94 78 [83 %] 4[4%) 12 [13 %]

Table 7. Results of our manual inspection of data flow pairs using real-world settings.

Table 7 confirms the trends observed in RQ3. DamFlow not only reduces the number of reported flows, but
also returns a substantially higher proportion of explicitly relevant flows—13% compared to just 1% for both
baselines. Despite operating in a noisier setting with automatically inferred categories, DamFlow’s false alarm
rate (83% irrelevant) remains lower than that of FlowDroid[DocFlow] (93%) and FlowDroid[SUSI] (92%). Moreover,
the number of explicitly relevant flows reported by DamFlow[GPT] in this setting (12) is comparable to its
performance in RQ3 (11), suggesting that automatic categorization via G-CatA introduces minimal degradation.
These results reinforce DamFlow’s suitability for practical deployment and highlight its robustness to real-world
conditions.

As we anticipated when commenting on the results of RQ3, the number of explicitly relevant flows should
not be interpreted in isolation. It is important to consider these figures alongside the drastic reduction in total
flows reported by DamFlow. A smaller absolute count of explicitly relevant flows is expected when the tool
aggressively filters out noise. What matters in practice is the density of meaningful flows within the output,
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which DamFlow significantly improves. We return to this point in the Discussion section (Section 6), where we
further contextualize the trade-off between comprehensiveness and usability in real-world settings.

Answer to RQ5: DamFlow achieves substantial reductions in the number of reported data flows (up to 91%
compared to FlowDroid[DocFlow]) even when using automatically inferred app categories. It continues to identify
more explicitly relevant data flows than baseline approaches, confirming its applicability in real-world deployment
scenarios.

6 DISCUSSION

In RQ3, we demonstrated how DamFlow can address the issue of an incomplete, pre-determined list of sources
and sinks, which may lead to missed data leaks, by detecting new sources not included in the SUSI and DocFlow
lists. This is achieved through our approach of using backward analysis, relying exclusively on a well-defined set
of sinks.

However, computing the recall of our approach—specifically, determining if it fails to identify data flow pairs
found by FlowDroid[SUSI] and FlowDroid[DocFlow]—is challenging due to the extremely high number of data
flow pairs these tools return. For instance, FlowDroid[DocFlow] identifies 36 196 data flow pairs for the apps in
our test set. Indeed, in the absence of ground truth data for leak detection, our only option would be to rely on
manual inspection, which is challenging given the tremendous number of data flow pairs returned by FlowDroid
when using the DocFlow and SUSI lists. Although ground truths like DroidBench[1] and TaintBench[41] exist,
they consist either of test apps built specifically for benchmarking or of extremely simple real-world apps that
lack descriptions or crash when run on a device, thus not representing real-world scenarios. Additionally, this
makes it impossible to categorize them into one of the 50 categories of ANDROCATSET (as well as to categorize
them using G-CatA) for testing our approach or other categorization-based approaches such as AnFlo.

Due to the challenges in computing the recall, we acknowledge that DamFlow might miss relevant data flow
pairs. For instance, if we consider the manually confirmed results from FlowDroid[DocFlow] or FlowDroid[SUSI]
(Table 2 and Table 6), DamFlow missed a few potentially relevant flows (2 in Table 2 and 1 in Table 6), while
correctly identifying all explicitly relevant ones. This behavior is likely due to methods such as read() being
common in certain categories, causing the anomaly detector to treat them as normal, whereas DamFlow focuses
on detecting explicitly relevant flows. However, its significant advantage in drastically reducing false alarms
perfectly aligns with the needs of practitioners [42-44] at the cost of potentially missing a few relevant data
leaks [45]. Our long-term goal is indeed to produce results that are not only technically sound but also directly
actionable by developers and security analysts. DamFlow takes an important step in this direction by dramatically
cutting down the number of reported flows while still uncovering leaks that state-of-the-art tools like FlowDroid
may miss. Nevertheless, our results in Table 2 show that a non-negligible share of the remaining flows still does
not reflect real privacy risks. This points to a clear opportunity for future work: integrating richer semantic
analysis, better flow interpretation, or more sophisticated ML techniques (e.g., fine-tuned LLMs or graph-based
models) could further improve the precision of anomaly detection and bring us closer to fully actionable outputs.
For years, practitioners using static analysis tools have raised concerns about the prevalence of false alarms,
which can overwhelm their teams [42-45]. These false alarms not only consume valuable time but also lead
to frustration and discouragement in the analysis process. The excessive noise generated by these tools often
obscures real issues, hindering analysts’ ability to prioritize and address critical problems. Below, we reproduce
two concerns raised by practitioners:

“Users dislike false positives, often intensely.
If given a choice between a configuration that reports 40 real defects and 10 false positives and a configuration
that reports 50 real bugs but with 50 false positives, our experience is that users will almost always prefer the
former, even though it is finding fewer real defects.”
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“False positives and noise are among the biggest
reasons why developers start using static analysis and then don’t continue.”

This highlights the need for approaches that filter out false alarms from automated approaches to make their
results actionable. Our approach aligns perfectly with these demands, as DamFlow drastically reduces the number
of false alarms.

On Data Flow Intent and Contextual Interpretation. DamFlow uses app categories (or automatic cat-
egorization) as a practical way to approximate an app’s expected behavior, highlighting data flows that are
uncommon compared to those typically observed in other apps with similar functionalities. We acknowledge that
context alone cannot fully determine whether a data flow is appropriate. For example, if location transmission is
rare among calculator apps, the occurrence of such a flow in one app is unusual, even if there may be legitimate
reasons (e.g., ad preferences). Similarly, if one app uses remote ads while another does not, this could represent a
negative (less privacy-compliant) outlier that merits closer examination. DamFlow flags flows as outliers not
because they are inherently “unacceptable”, but because they are rare among other apps in the same category.
These flagged flows are intended to assist analysts by drawing attention to behaviors that deviate from the norm,
without making any assumptions about their purpose or acceptability.

7 LIMITATIONS AND THREATS TO VALIDITY

Our research is susceptible to threats to validity, which arise from various limitations in our approach. Below, we
outline the most significant threats and limitations.

Human Error and Subjectivity. As explained in Section 6, while some ground truths for verifying data leak
detection do exist, they cannot be used to test our approach. This implies that, in the absence of suitable ground
truth for verifying data-leak detection in a category-based approach; certain aspects of our assessment rely on
manual analysis based on our own expertise. It is important to note that, despite following a consistent process,
human subjectivity may still influence specific elements. To mitigate this threat to validity, we have shared all
our artifacts and code.

FlowDroid Limitations. Our tool is built upon FlowDroid, which inherently carries its limitations that may
also affect our approach. For example, scenarios involving user acknowledgment—where an application requests
permission to access a privacy-sensitive API—could be misinterpreted as anomalous data flows. While these
limitations are noteworthy and warrant further investigation, they fall outside the scope of this paper, which
primarily focuses on the effectiveness of DamFlow within the existing framework provided by FlowDroid.
Data Flows Sanitizers. Our current approach does not attempt to detect or model sanitizers along data flow
paths—i.e., methods that process or clean data to remove or neutralize sensitive information before it reaches
a sink. As a result, some of the flows we report may not represent actual privacy leaks if the sensitive data is
sanitized before reaching a sink. Addressing sanitization is an important direction for future work. Similar to
tools like FlowDroid, our tool returns a list of potential data leaks. However, DamFlow increases the actionability
of these results, which can help developers better assess and prioritize security risks.

8 RELATED WORKS

In this section, we present the related works available in the literature that are close to our work.

Most Similar Approaches. The two most related approaches to our work are probably AnFlo [12], against
which we demonstrated better performance in RQ3 and MUDFLOW [13]. Demissie et al. proposed AnFlo, a
method for detecting anomalous data flows in Android apps by categorizing apps functionally and learning their
typical data behaviors, flagging deviations as anomalies. However, unlike our approach, they do not display
detailed data flow pairs to users. Instead, they group Android APIs by permission types and identify outliers
based on these permission-based groupings [12]. Another relevant approach for detecting abnormal data flows in

ACM Trans. Softw. Eng. Methodol.



DamFlow: Preventing a Flood of Irrelevant Data Flows in Android Apps « 21

Android apps is MUDFLOW by Avdiienko et al. [13]. Unlike our approach, however, MUDFLOW functions as a
malware detector for Android apps, using abnormal data flows as features to train a classifier that distinguishes
between benign and malicious apps. As a result, the user only receives information on whether the analyzed app
is malware or not. Both methods rely on a list of sources and sinks generated by SUSI and thus face the same
limitations discussed in Section 1, i.e., false alarms and false negatives problems. In contrast, DamFlow is, to the
best of our knowledge, the first approach that does not rely on a predefined list of sources, thus addressing the
issues associated with such lists, while at the same time, it serves as a general solution for data leak identification
purposes.

Backward DataFlow Analysis. Backward data flow analysis has a long-standing history in security research.
For example, Krinke and Snelting introduced Valsoft [46], which applied slicing and constraint-solving techniques
to validate measurement software by tracing data flows backward. Hammer and Snelting further formalized this
notion in JOANA [47], proposing a security theorem and applying backward, flow-sensitive, and.context-sensitive
information flow control on Java programs using program dependence graphs. In the mobile domain, R-Droid [48]
extended this idea to Android by using backward data-dependence slicing to analyze how sensitive data might be
influenced throughout an application. However, while these works laid the foundation for backward data flow
analysis, they rely on traditional, manually curated lists of sources and sinks. In contrast, DamFlow eliminates
the need for a predefined source list and operates solely from sinks, allowing for broader and more flexible
identification of abnormal data flows in Android apps.

Context-aware Approaches in General. In our paper, we trained anomaly detection models across app
categories, inspired by CHABADA by Gorla et al. [17], which detects malicious apps by identifying deviations
from app descriptions. CHABADA classifies Android apps based on their descriptions and then applies a One-
Class SVM for anomaly detection on API usage patterns. This paper, along with other studies [34, 49, 50], does
not rely on taint analysis to detect data leaks, as we do in DamFlow, but serves as an example of the effectiveness
of category-based anomaly detection approaches.

More recently, Malviya et al. [51] use control-flow graph embeddings and machine learning for fine-grained,

context-aware permission classification. Unlike our approach, which focuses on backward taint analysis and
anomaly detection for data leak identification without relying on source lists, their method targets precise
permission misuse detection through graph-based modeling of app behavior.
Data Leaks Detection in Android apps. While FlowDroid [1] represents the current state of the art for
static taint analysis, other tools have been developed over the years, such as Amandroid [52], LeakMiner [53],
DroidSafe [54], IccTA [55], and many others [56—58]. DeepFlow [59], a deep learning-based approach by Zhu
et al., analyzes data flows in Android apps. Similar to MUDFLOW, it uses abnormal data usage to identify
malware. LeakSemantic [60] by Fu et al. is a framework designed to automatically identify abnormal sensitive
network transmissions in mobile applications by combining hybrid program analysis with machine learning. Both
DeepFlow and LeakSemantic rely on the list generated by SUSI. LeakDetector [61] by Zhou et al. is a tool that
identifies vulnerabilities in the Android framework that allow unauthorized apps to intercept privacy-sensitive
data from Intent objects. LeakDetector relies on permissions to identify privacy-sensitive APIs, similar to what
AnFlo does. Chen et al. proposed ClipboardScope [62], which uses static program analysis to examine clipboard
data usage in mobile apps by analyzing its validation and data flow. The authors of ClipboardScope use a list of
only three methods as sources due to their focus on clipboard data usage. These tools, therefore, focus only on
specific problems, such as clipboard data, intents, network transmission, and malware detection. Furthermore,
if they rely on the list generated by SUSI, they will still suffer from the usual issues of false alarms and false
negatives. Instead, our approach, DamFlow, serves as a general solution for data leak identification purposes while
not relying on a pre-determined list of sources and sinks. We leave for future work the possibility of observing
how the performance of these data leak identification tools changes when backward analysis with only a list of
sinks is used instead of relying on the SUSI list.

ACM Trans. Softw. Eng. Methodol.



22« Aleccietal.

9 CONCLUSIONS

While FlowDroid is a state-of-the-art tool for the static analysis of Android apps, it is impractical for identifying
data leaks in real-world scenarios due to @ a “flood” of false alarms caused by the difficulty in correctly identifying
privacy-sensitive sources, and @ undetected data leaks, which may result from incomplete lists of sources and
sinks. In this paper, we propose DamFlow, a novel approach that combines backward taint analysis with context-
aware anomaly detection, using only a list of well-defined sinks. This addresses both issues simultaneously,
making FlowDroid more practical.

We compared DamFlow against FlowDroid’s output using lists of sources and sinks generated by automated
approaches such as SUSI and DocFlow. Our results demonstrate that DamFlow drastically reduces the number
of returned data flows, filtering out irrelevant data flows while also detecting sources not present in the pre-
determined lists from SUSI and DocFlow. We also compared DamFlow against the category-based approach
AnFlo, showing that our approach outperforms it. In summary, DamFlow advances Android app analysis by
reducing noise and enhancing source detection, providing a more effective solution for real-world data leak
identification.
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