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Abstract—The rapid evolution of Android malware poses
significant challenges to the maintenance and security of mobile
applications (apps). Traditional detection techniques often
struggle to keep pace with emerging malware variants that
employ advanced tactics such as code obfuscation and dynamic
behavior triggering. One major limitation of these approaches
is their inability to localize malicious payloads at a fine-grained
level, hindering precise understanding of malicious behavior.
This gap in understanding makes the design of effective and
targeted mitigation strategies difficult, leaving mobile apps
vulnerable to continuously evolving threats.

To address this gap, we propose MalLoc, a novel approach
that leverages the code understanding capabilities of large
language models (LLMs) to localize malicious payloads at a
fine-grained level within Android malware. Our experimental
results demonstrate the feasibility and effectiveness of using
LLMs for this task, highlighting the potential of MalLoc to
enhance precision and interpretability in malware analysis. This
work advances beyond traditional detection and classification by
enabling deeper insights into behavior-level malicious logic and
opens new directions for research, including dynamic modeling
of localized threats and targeted countermeasure development.

Index Terms—Android Malware Analysis, Malicious Payload
Localization, Large Language Models

I. INTRODUCTION

Android powers billions of mobile devices worldwide [1],
enabling a vast ecosystem of applications (apps) that enhance
our productivity, entertainment, and daily life. However,
the widespread adoption and open nature of the Android
platform have made it an attractive target for attackers
seeking to exploit users and systems through malicious apps.
Over time, Android malware has evolved rapidly, adopting
sophisticated techniques such as code obfuscation [2],
dynamic behavior triggering [3], and payload repackaging [4]
to evade traditional detection mechanisms [5], [6]. These
evolving threats pose critical challenges to the maintenance
and evolution of secure mobile apps, requiring continuous
advancements in malware analysis and mitigation strategies.

While malware detection techniques have improved in
identifying whether an app is malicious or benign [7]–[12],
and malware family classification techniques can further
categorize malicious apps into known families [13]–[17],
these advances still fall short of providing actionable insights

at the code level. Specifically, most existing models lack the
capability for fine-grained localization of malicious payloads,
making it difficult to accurately identify the specific code
locations responsible for harmful behaviors. This limitation
impedes the understanding of how malware operates
and evolves, and it prevents researchers from extracting
high-quality, behaviorally meaningful features that could
strengthen detection models and improve long-term resilience.
In addition, many learning-based detection and classification
models act as black boxes, offering little insight into their
decision-making processes. This lack of transparency hinders
analysts’ ability to validate predictions, understand model lim-
itations, and derive actionable countermeasures—ultimately
limiting their utility in real-world, security-critical contexts.

A few existing works [18], [19] have attempted to localize
malicious payloads at the class level. However, they suffer
from limited localization precision, making it difficult to
precisely pinpoint the actual code implementing malicious
behaviors. Moreover, they lack the ability to provide specific
behavior descriptions that explain how the identified payloads
operate. To the best of our knowledge, our approach MalLoc
is the first to explore fine-grained malicious payload localiza-
tion along two key dimensions: ❶ Method-level localization,
which focuses on identifying the small executable code
units (Smali methods) responsible for malicious behaviors,
improving precision over class-level approaches; ❷ Detailed
behavioral explanations, which provides human-readable
insights into the specific actions and intent of the localized
malicious payloads, supporting explainability and analyst
validation. To achieve this, MalLoc innovatively leverages
malware family knowledge as guidance, incorporates
LLM-powered semantic reasoning, and employs a two-phase
approach to progressively and precisely localize malicious
methods and identify their behavioral roles.

To enable a reliable evaluation of MalLoc, we developed
a demo Android app, MalApp, from scratch. It implements
several common malicious behaviors observed in real-world
malware, such as privacy theft and aggressive advertising,
and provides fine-grained ground truth for controlled and
quantitative assessment of localization capabilities. In addition,
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Fig. 1: The overview of different stages of Android malware analysis.

we evaluate MalLoc on a real-world Android malware sample
from MalRadar [20] and manually analyze its predictions to
validate their correctness. Experimental results highlight the
potential of MalLoc to advance malware analysis toward more
precise and explainable behavior localization. We believe this
work can inform future research directions, such as dynamic
analysis of localized payloads, the development of inter-
pretable malware detection models, and the design of targeted
mitigation strategies grounded in behavior-level insights.

The contributions of this work are summarized as follows:
• We propose MalLoc, a novel LLM-driven approach

for fine-grained localization of malicious payloads
in Android malware, simultaneously generating
corresponding behavioral explanations.

• We develop a demo app and analyze a real-world mal-
ware sample, enabling preliminary empirical evaluation
at the method level and demonstrating the potential of
MalLoc to advance analysis precision and explainability.

• To support reproducibility and future research, we pub-
licly release the dataset and source code of MalLoc at:
https://github.com/Trustworthy-Software/MalLoc

II. BACKGROUND

Android Malware Analysis. Machine learning-based
approaches [7], [9], [21]–[24] for Android malware analysis
have been extensively explored over the past decade. More
recently, researchers have begun investigating the potential
of applying LLMs to this domain [25]. However, the majority
of prior work remains focused on early-stage tasks—namely,
malware detection (Stage 1 in Figure 1) and family
classification (Stage 2 in Figure 1). Despite their importance,
these early-stage techniques fall short of fulfilling the ultimate
goal of malware analysis: enabling effective malware defense.
This includes tasks such as dynamic modeling of malicious
behavior, robustness testing of detection systems, and the
design of targeted countermeasures. Bridging the gap between
detection/classification and actionable defense requires a
deeper, more granular understanding of how malicious be-
haviors are implemented and triggered within an application.

A critical missing bridge in this process is fine-grained ma-
licious payload localization (Stage 3 in Figure 1)—the ability
to identify and interpret specific methods or code segments
responsible for malicious actions. Without this capability, secu-
rity analysts are left with limited insight into the internal work-
ings of malware, hindering both interpretability and mitigation

efforts. The mission of MalLoc is to close this gap by advanc-
ing malware analysis beyond coarse-grained classification:
fine-grained localization and behavioral explanation repre-
sent the core novelty of our work. MalLoc paves the way for
more precise, explainable, and actionable malware analysis.
Smali Code. Android apps are primarily written in Java
or Kotlin and compiled into DEX (Dalvik Executable)
bytecode [26], which is stored in .dex files within APKs
(Android Package files that bundle the compiled code and
resources for distribution). Since these packages usually
do not include the original source code, direct access to
high-level code is not feasible. To enable analysis, tools such
as ApkTool [27] can decompile the bytecode into Smali,
a low-level, human-readable representation of DEX code.
Smali serves as a practical intermediate format for examining
app behavior when the original source is unavailable. Prior
work has shown that LLMs can effectively interpret and
reason about Smali code [28], motivating our focus on
Smali-based analysis in this work.

During the compilation process, a single Java method can
be transformed into multiple synthetic Smali methods. This
occurs when Java features like lambdas, anonymous classes,
or inner classes are compiled, as they are often translated
into separate methods to support efficient runtime dispatch
and maintain the language’s object-oriented and functional
behavior within the Android environment. For example, in
our demo app, a single Java method, onCreateView(),
was translated into five distinct Smali methods (as shown
in Figure 2). This transformation implies the challenge of
mapping malicious behavior to a single Smali method. Moti-
vated by this observation, we design a two-phase localization
approach: first identifying the malicious Smali class, then
pinpointing the specific methods responsible for the behavior.

III. APPROACH

We begin with a simple baseline that applies LLMs directly
to Smali classes. Based on its limitations (discussed later),
we develop MalLoc, a more structured two-phase approach.
As a preprocessing step, we decompile each APK using
ApkTool, which converts DEX bytecode into Smali format.

Baseline. As a starting point, we implement a straight-
forward baseline approach that applies LLMs directly to
Smali classes, prompting the model to identify and explain
malicious behaviors from a predefined list without leveraging
any structural context or multi-stage reasoning. The behavior
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public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)

.method public onCreateView(Landroid/view/LayoutInflater;Landroid/view/ViewGroup;Landroid/os/Bundle;)Landroid/view/View;

.method synthetic lambda$onCreateView$0$ui-home-RequestData2Fragment(Landroid/view/View;)V

.method synthetic lambda$onCreateView$1$-ui-home-RequestData2Fragment(Landroid/view/View;)V

.method synthetic lambda$onCreateView$2$ui-home-RequestData2Fragment(Landroid/view/View;)V

.method synthetic lambda$onCreateView$3$lu-ui-home-RequestData2Fragment(Landroid/widget/FrameLayout;)V

JAVA

SMALI

Fig. 2: Example of the translation of a Java ‘onCreateView()‘ method into multiple Smali methods.

Context:
You are an expert in Android malware analysis. Analyze the
following Smali class and determine if it implements any malicious
behaviors.

Input – Smali Class:
{class_content}
Possible Malicious Behaviors:
1. Privacy Stealing; 2. SMS/CALL Abuse; 3. Remote Control;
4. Bank/Financial Stealing; 5. Ransom; 6. Accessibility Abuse;
7. Privilege Escalation; 8. Stealthy Download; 9. Aggressive
Advertising; 10. Miner; 11. Tricky Behavior; 12. Premium Service
Abuse.

Instruction:
Use the following format:
IS_MALICIOUS: <yes or no>
CONFIDENCE: <confidence score 0-100>
EXPLANATION: <detailed explanation>
BEHAVIOR: <comma-separated behaviors>

METHOD: <method signature>
ROLE: <role description>
METHOD: <...>
ROLE: <...>

Context:
You are an expert in Android
malware analysis. Analyze the
following Smali class and determine
if it implements one or several of
the specified malicious behaviors.

Input – Smali Class:
{class_content}
Input – Malicious Behaviors to
Look For:
{behavior_description}
Instruction:
Use the following format in your
response:
IS_MALICIOUS: <yes or no>
CONFIDENCE: <confidence
score 0-100>
EXPLANATION: <detailed
explanation>

Do not include any other text,
markdown, or formatting.

Context:
The following Smali class has been
identified as implementing one or several
malicious behaviors in the first phase.
Analyze the class and identify
all methods that are involved in
implementing these behaviors.

Input – First Phase Explanation of
Identified Malicious Behavior(s):
{first_phase_explanation}
Input – Smali Class:
{class_content}
Instruction:
IMPORTANT: For each method involved
in the behavior, output the following
fields, one per line, for each method:
METHOD: <first line of
method>
ROLE: <role description>
CONFIDENCE: <confidence score
0-100>

Fig. 3: Prompt templates used in: Baseline Approach (left), Phase 1 of MalLoc (middle), and Phase 2 of MalLoc (right).

list consists of 12 distinct malicious behaviors derived from
MalRadar [20], a high-quality benchmark based on real-world
Android malware, with manually verified family labels. In this
dataset, each malware family is associated with certain partic-
ular behaviors from the list. The behavior list and prompt tem-
plate used in this baseline approach are illustrated on the left
side of Figure 3. As we demonstrate later in Section IV-B, the
baseline approach yields poor performance. Through detailed
analysis, we attribute this limitation to the inherent complexity
of the task and the insufficient contextual guidance provided
to the LLMs. Specifically, the baseline prompt implicitly
requires an LLM to perform three tasks simultaneously: ❶ de-
termine whether the given Smali class is malicious or benign;
❷ identify which malicious behaviors are implemented if the
class is malicious; and ❸ localize the specific methods in-
volved in each identified behavior. These challenges motivate
our proposed method, MalLoc, described hereafter.

MalLoc. We propose MalLoc, a two-phase approach
that decomposes the problem along semantic and structural
dimensions. Inspired by prior work showing that decomposing
complex tasks can improve LLM performance [29], we
isolate each subtask and enrich the prompt with targeted
context. As illustrated in Figure 4, MalLoc separates
localization into two distinct phases: Phase 1 focuses on
identifying malicious Smali classes associated with a specific

behavior, and Phase 2 drills down to pinpoint the individual
methods responsible for that behavior. This design enables
MalLoc to achieve more accurate and explainable localization
of malicious payloads. To implement MalLoc, we begin by
creating detailed descriptions for each of the 12 predefined
malicious behaviors, which are available in the replication
package. Using metadata from MalRadar benchmark [20],
we construct a family behavior lookup table that maps each
malware sample to a subset of relevant behaviors based on
its family label. The two-phase pipeline is applied iteratively
to each behavior linked to the input malware sample. The
prompt template for Phase 1 is shown in the center of Figure 3.
It combines the Smali class content with the corresponding
behavior description to prompt the LLM to determine whether
the class implements that specific malicious behavior. If a
class is flagged as benign in Phase 1, the process terminates for
that class. If it is deemed malicious, the class—along with the
explanation generated by the LLM—is forwarded to Phase 2.
As shown on the right side of Figure 3, Phase 2 uses a second
prompt template that incorporates the Phase 1 explanation to
guide the LLM in identifying which methods within the class
contribute to the specified behavior. The output includes both
the method-level localization and a role description for each
method. Finally, the results are subject to manual verification
by security analysts to ensure accuracy and interpretability.
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IV. EXPERIMENTS

A. Apps Under Analysis

A key challenge in evaluating malicious behavior
localization is the lack of ground-truth datasets with
fine-grained annotations. In the absence of such datasets,
evaluating localization accuracy requires extensive manual
effort to validate behavior predictions at both class and
method levels—a time-consuming and labor-intensive
process. As a result, we focus our evaluation on two
representative Android apps that allow for reliable and
interpretable assessment. Specifically, we use: ❶ MalApp,
a controlled demo app we developed with 3 known malicious
behaviors observed in real-world malware, and ❷ a real-world
malware sample drawn from the MalRadar benchmark.

1) MalApp: This app is specifically designed to cover
a diverse set of representative malicious behaviors under
controlled conditions, enabling efficient verification by pro-
viding precise ground truth about where each behavior is
implemented. The developer code of MalApp consists of 51
Smali classes and 165 methods, among which three malicious
behaviors are implemented across 3 classes and 12 methods.
It implements three distinct behaviors: ❶ Privacy Stealing, ❷
Aggressive Advertising, and ❸ Tricky Behavior. For Privacy
Stealing, the app retrieves contact data from the device’s
storage and transmits it to an external server. Aggressive
Advertising is implemented via fake click generation, where a
transparent overlay tricks users into interacting with an adver-
tisement URL. Tricky Behavior includes both label/icon ma-
nipulation—changing the app’s icon on user interaction—and
app hiding, where the app disappears from the launcher after
a trigger. To ensure safety and ethical compliance, all external
endpoints (e.g., the server receiving contact information and
advertisement links) are simulated or non-functional, and the
app is intended strictly for research purposes.

2) RuMMs App: For our real-world analysis, we
select a malware sample from the largest family in
MalRadar—RuMMs—which is annotated with five
malicious behaviors: Privacy Stealing, SMS/CALL Abuse,
Remote Control, Bank/Financial Stealing, and Tricky
Behavior. We chose a small app in the family to minimize
analysis complexity while keeping our experiments

representative. The APK contains 21 classes and 66 methods,
and masquerades as an MMS/SMS messenger by using a
corresponding icon and name. The “AndroidManifest” lists 12
permissions—including READ_CONTACTS, SEND_SMS,
and BIND_ACCESSIBILITY_SERVICE—and defines
four activities, four services, and three broadcast receivers,
suggesting a wide range of capabilities.

The app employs obfuscation techniques such as mean-
ingless class and method names and limited reflection (e.g.,
classes named a, b, Charge, NeglectDefend, etc.).
Upon launch, it prompts users to enable accessibility services
and attempts to become the default SMS app. It maintains
persistent background services, monitors system and banking
apps, and exfiltrates user contacts. Although we could not
confirm the exact intent of the SMS command mechanism due
to an inactive C2 server, the app clearly performs unauthorized
actions like SMS sending, remote monitoring, and user
tracking. Unlike MalApp, reverse-engineering this malware
required significant manual effort. Importantly, MalRadar
provides only family-level behavior labels without payload lo-
cations or semantic explanations. Therefore, we manually ver-
ified all LLM-generated outputs to assess the accuracy and in-
terpretability of MalLoc. This real-world case allows us to test
MalLoc ’s robustness beyond controlled environments. Due to
the time-intensive nature of such manual verification, scaling
to a broader set of real-world apps is left as future work.

B. Results

TABLE I: Comparison of Baseline and MalLoc on MalApp.

Method Model C-Prec C-Rec C-F1 M-Prec M-Rec M-F1

Baseline Phi-4 0.00 0.00 0.00 0.00 0.00 0.00
GPT-4.1 0.67 0.67 0.67 0.70 0.58 0.64

MalLoc Phi-4 0.67 1.00 0.78 0.62 0.87 0.70
GPT-4.1 0.83 1.00 0.89 0.65 1.00 0.76

1) MalApp: For our evaluation, we employed two LLMs:
the open-source model Phi-4 [30] and the commercial model
GPT-4.1 from OpenAI [31]. The performance results are
presented in Table I, where the prefix C- indicates class-level
metrics and M- indicates method-level metrics. A prediction
is a true positive (TP) if it correctly identifies a malicious class
or method with the right behavior; false positives (FP) refer to
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incorrect behavior labels or misclassified benign components;
false negatives (FN) denote missed malicious components.

The baseline approach performs poorly across both models.
In particular, Phi-4 fails to produce any correct predictions.
Upon manual inspection, we observed that although it success-
fully identified one malicious class, it misclassified the behav-
ior type and failed to identify the relevant methods—resulting
in zero scores across all metrics. While GPT-4.1 achieves
slightly better performance under the baseline setup, its overall
precision and recall remain low, especially at the method level.

In contrast, integrating the same LLMs into our
proposed MalLoc framework yields significantly improved
performance. As shown in Table I, both models demonstrate
higher precision, recall, and F1 scores at both the class and
method levels. Notably, with GPT-4.1, MalLoc correctly
identifies all malicious classes and methods, achieving perfect
recall and high precision. Specifically, it predicts 4 positive
classes and 22 positive methods, compared to the total 165
methods in the app—reducing the manual analysis workload
by approximately 87%. This highlights MalLoc ’s strong
potential to assist human analysts in accurately and efficiently
localizing malicious payloads within Android applications.

2) RuMMs App: We apply MalLoc with GPT-4.1 to the
selected real-world malware sample from the RuMMs family.
Due to the absence of fine-grained ground truth in MalRadar,
we cannot compute all the standard class- or method-level
metrics such as recall and F1 Score. However, through
detailed manual analysis, we found that MalLoc successfully
identified 4 out of the 5 annotated behaviors associated with
this sample. Specifically, out of the app’s 21 Smali classes
and 66 methods, MalLoc correctly localized 6 classes and
17 methods as malicious. All predictions and associated role
descriptions were manually verified as accurate, resulting
in 100% precision at both the class and method levels. This
includes recognizing key operations such as exfiltration of
contact information (Privacy Stealing), unauthorized SMS
sending (SMS/CALL Abuse), background service persistence
and remote interaction mechanisms (Remote Control), as
well as auto-clicking consent dialogs (Tricky Behavior). An
illustrative example prediction is shown in Figure 5.

Class: b (obfuscated)
Behavior: Privacy Stealing
Method: .method public static
f(Landroid/content/Context;)Ljava/util/ArrayList;

Role Explanation: This method enumerates the user’s contact list by
querying the contacts content provider and extracting names and phone
numbers.
Method: .method public static
a(Landroid/content/Context;ILjava/lang/String;)V

Role Explanation: This method exfiltrates the sensitive data by
embedding it into Intent extras and starting a background service.
Method: ......

Fig. 5: An example prediction by MalLoc, showing class-level
behavior and method-level role explanations.

These findings underscore MalLoc ’s ability to perform
precise and semantically rich localization even in wild,
obfuscated environments. Despite the lack of formal
annotations, its outputs aligned well with expert analysis,
suggesting strong potential to assist human analysts in
real-world malware inspection.

V. DISCUSSION

This work explores the feasibility of leveraging LLMs for
the under-explored task of fine-grained malicious payload
localization in Android apps. Rather than aiming for full au-
tomation, our goal is to support human analysts by narrowing
the search space and reducing manual effort in identifying and
understanding malicious behaviors. Our preliminary results
demonstrate the promise of LLMs in this domain, particularly
in enhancing interpretability and precision. At the same time,
the study highlights key challenges that remain—such as
improving efficiency, scaling to large apps, and calibrating
confidence to guide analyst attention effectively.
Research Outlook. Looking ahead, we envision that
LLM-driven localization can serve as a foundation for a
broad range of downstream security tasks, including dynamic
behavior modeling of localized payloads, explainable
malware detection, and behavior-specific mitigation strategies.
We hope this work will act as a catalyst toward building more
interpretable, context-aware, and analyst-assistive malware
analysis systems—bridging software engineering and
security, and fostering stronger synergy between LLM-based
reasoning and software maintenance practices.

VI. CONCLUSION

In this paper, we presented MalLoc, a novel two-phase
framework that leverages LLMs for fine-grained localization
of malicious payloads in Android apps. Unlike traditional
work focused on coarse-grained detection or family
classification, MalLoc enables a deeper understanding of
malicious behaviors by identifying not only the presence
of malicious logic at the class level but also pinpointing the
specific methods involved, along with their functional roles.
Future Work. We identify several promising directions
for future research. First, we plan to expand our evaluation
to include additional LLMs and a more diverse set of
real-world malware samples and families, in order to
assess the generalizability of MalLoc across behavior types
and obfuscation strategies. Second, we aim to develop
mechanisms for confidence calibration and uncertainty
estimation to better support human analysts in high-stakes
security settings. Third, we intend to explore techniques
for improving the efficiency and scalability of MalLoc,
particularly when analyzing large and complex apps.
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