On the security of pre-installed Android apps in
low-cost devices

Alioune DIALLO!, Anta DIOP?, Abdoul Kader KABORE?, Aleksandr
PILGUN?, Jordan SAMHI?, Tegawendé F. BISSYANDE3, and Jacques
KLEIN3

! SnT/TruX, University of Luxembourg, Luxembourg
{alioune.diallo}@uni.lu
2 ESP, Université Cheikh Anta Diop de Dakar, Senegal
antadiopl@esp.sn
3 SnT/TruX, University of Luxembourg, Luxembourg
{firstname.lastname}@uni.lu

Abstract. Pre-installed system and vendor applications on low-cost An-
droid devices can run with elevated privileges yet receive little indepen-
dent scrutiny. In this work, we present PiPLAnD, a pipeline that ex-
tracts APKs from physical devices and applies static analysis to detect
sensitive-data leaks, manifest misconfigurations, and suspicious behav-
iors in pre-installed apps. Using PZPLAnD, we analyzed 1544 pre-installed
APKs collected from seven devices (Infinix, itel, Tecno). Our findings
show that 145 apps (9%) leak sensitive information, 249 apps (16%) ex-
port sensitive components without adequate protection, and numerous
apps exhibit risky behaviors (226 execute dangerous commands, 79 ac-
cess/send/delete SMS, 33 perform silent installation actions). We also
identified a vendor-shipped package that appears to exfiltrate device
identifiers and location to a third-party vendor. These results indicate
that pre-installed software on widely distributed, low-cost devices can
pose real privacy and security risks to end users.

Keywords: pre-installed apps - sensitive data - Android - static analysis
- low-cost devices - Africa.

1 Introduction

The Android operating system has enabled affordable smartphones for millions of
people worldwide. Devices typically ship with manufacturer- or vendor-installed
systems and third-party apps, which can become a distribution vector for mal-
ware and privacy-invasive functionality, especially in developing regions [24].
Low-cost smartphones remain widely used across Africa [36] and have helped
reduce the digital divide by expanding access to services [31, 15]. For example,
roughly 20—22 million people in South Africa use smartphones, accounting for
one third of the population [36]. Feature phones and inexpensive devices are
still popular in Africa, which preserves the market opportunity for the expan-
sion of low-cost Android devices. Although low-cost Android initiatives have

2 A. DIALLO et al.

improved device accessibility [3], the pre-installation process can be abused to
embed harmful apps that reach large user populations.

Multiple reports document dangerous apps shipped with devices [7,27, 34,
25,38, 4]. These apps have been observed exfiltrating personal data to remote
servers [7], harvesting financial credentials via clipboard monitoring [27], per-
forming silent installations [38], or enrolling users in paid services without con-
sent [4]. Several of the reported apps appear specifically on low-cost devices,
including phones sold in Africa [7, 4].

A few studies collected firmware images from vendor websites and online
forums, extracting pre-installed apps for analysis [38,11,21,33]. The extracted
apps are then examined for suspicious permissions, misconfigurations in mani-
fest files [38, 21, 33], malware [38], and data leaks [11, 14, 6]. Other studies have
directly extracted pre-installed apps from physical devices [14, 6], allowing for
a more comprehensive assessment across various Android brands. Yet, research
on pre-installed applications remains limited since Android device manufactur-
ers are expected to strictly follow compliance guidelines enforced by Google [20].
Unlike globally known brands, Android devices sold in African markets are often
very low-priced. This raises concerns about the trade-offs manufacturers make
between cost and security.

We studied seven low-cost device models from Infinix, Tecno, and itel brands
— all produced by TRANSSION and together accounting for 51% of the African
smartphone market in 2023 [8]. We extracted a dataset of 1544 pre-installed
APKs for analysis. Pre-installed apps on these devices have received little sys-
tematic analysis despite their prevalence. The most notable work is by Elsabagh
et al. [11] who examined pre-installed apps from Infinix and Tecno, focusing
on privilege escalation. To the best of our knowledge, no prior work has sys-
tematically analyzed pre-installed apps across these low-cost Android devices
commonly sold in Africa. To explore this gap, we developed PtPLAnD, a pipeline
that extracts APKs from physical devices and applies taint-based leak detec-
tion, pattern-driven behavior scanning, and manifest/component inspection to
find data leaks, insecurely exported components, and suspicious behaviors. Our
study builds upon existing work by taking a more in-depth approach. For in-
stance, previous studies identified exported components by analyzing only the
application manifests. In contrast, we extended this analysis by examining the
corresponding code to detect components that provide access to sensitive data.
Moreover, while prior research on data leaks has mainly focused on those oc-
curring through Android or Java API methods, our analysis also considers leaks
introduced via third-party libraries.

Our analysis uncovered multiple suspicious pre-installed apps across the tested
devices. A substantial fraction of these apps leak sensitive information (for ex-
ample, IMEL, IMSI, location) and exhibit manifest misconfigurations that expose
components without adequate protection. In a notable case, PiPLAnD identified
the package com.transsion.statisticalsales, which was not flagged by VirusTo-
tal. These findings underscore the need for independent audits of pre-installed
software on low-cost devices in developing regions.

On the security of pre-installed Android apps in low-cost devices 3

Below, we summarize our main contributions:

We present PiPLAnD, a pipeline to systematically inspect pre-installed apps
from Android devices.

We collected a dataset of 1544 pre-installed APKs from seven low-cost device
models (Infinix, Tecno, itel).

We identify manifest misconfigurations: 249 app versions (16%) export sen-
sitive components without adequate protection.

We quantify sensitive-data leakage: 145 apps (9%) leak identifiers or location
data.

We document widespread suspicious behaviors in pre-installed apps.

@ ® ® o 06

2 Background

This short background defines terms used in the paper and clarifies our mea-
surement scope.

Android firmware and pre-installed apps. Firmware boots device hard-
ware and the Android OS*. Devices ship with system apps and manufacturer-
supplied pre-installed apps [23]. System apps can run with elevated privileges
or reside in privileged locations (e.g., /system/priv-app). Some devices in our
dataset use Android Go, a lightweight Android configuration for entry-level hard-
ware. Android Go was designed to optimize its running on low-end devices; how-
ever, the security implications of this optimization are not fully understood [17].

Exported components and misconfigurations. Apps declare compo-
nents in AndroidManifest.xml. A component is "exported" if other apps can
start or bind to it (via android:exported or an intent-filter). Exported
components without proper permissions or access checks form an attack surface
and are treated here as security misconfigurations [18].

PII, sources, sinks, and leaks. PII includes identifiers and user data
(IMEI, IMSI, phone number, location) [26]. A SOURCE is a method that reads
sensitive data (e.g., getLastKnownLocation()); a SINK is a method that can
exfiltrate data (network send, SMS, world-readable storage). When an app al-
lows to get this data and send it outside the app itself, in this case, we talk
about data leakage (or data leak). Static taint analysis tools like FlowDroid are
well known to detect leaks in Android apps [2].

Low-cost device. In this study, we often use the terms "low-cost", "low-
end", "cheap", and "affordable" when talking about devices that are not expen-
sive but affordable, specifically targeting devices primarily used in Africa.

3 Related Work

To the best of our knowledge, this study is the first one that focuses on analyzing
Android apps pre-installed on the devices primarily used in Africa. However,

4 https://www.androidpolice.com/what-is-firmware/

4 A. DIALLO et al.

there are some existing works about the analysis of pre-installed apps in Android
devices.

Indeed, Zheng et al. [38] presented a tool named DroidRay that extracts stat-
ically and dynamically pre-installed apps from 250 firmware downloaded from
forums and websites. The static extraction consists of extracting pre-installed
apps directly from the firmware images. They also flashed the image into a device
and then dynamically extracted the pre-installed apps using ADB commands.
DroidRay performs pre-installed app analysis and system analysis by extracting
the “SharedUserld” attribute from the AndroidManifest.xml and the signature
information from the RSA file before comparing them with the default signa-
tures they found from the AOSP. They also analyzed the apps in VirusTotal to
detect potential malware. It performs static and dynamic analysis of the An-
droid firmware by doing a system signature vulnerability detection, a network
security analysis, and a privilege escalation vulnerability detection. In our pro-
posed pipeline, we leveraged the technique of dynamic extraction to directly
extract pre-installed apps from a physical device using ADB commands rather
than collecting firmware and flashing it into a device.

Mitchell et al. [30] designed DexDiff, a system for assessing the security im-
pacts of vendor customization to the official Android system. DexDiff helps the
security analyst, who first retrieves the pre-installed apps and libraries from the
phone and then builds their corresponding base binaries from the release branch
in AOSP on which the phone is based. DexDiff compares each pair of these bi-
naries obtained and evaluates the security impacts of individual modifications.
The only similarity between this study and our approach is that it extracts pre-
installed apps from the phone. However, the proposed tool did not automate this
process. The apps are supposed to be extracted before using DexDiff. Contrary
to our approach, PiPLAnD automated the process of extraction and analysis.

Elsabagh et al. [11] proposed a static analysis tool named FIRMSCOPE to
identify unwanted functionality in pre-installed apps by analyzing the Android
firmware. FIRMSCOPE extracts pre-installed apps from the firmware and then
performs a taint analysis with context-sensitive, flow-sensitive, field-sensitive,
and partially object-sensitive. Specifically, it focuses exclusively on identifying
the increase in privileges.

Gamba et al. [14] presented a large-scale study of Android pre-installed us-
ing crowd-sourcing methods. In this study, the authors built an Android app,
Firmware Scanner, that looks for and extracts pre-installed apps when installed
on a device. This study performs permission analysis using Androguard, static
analysis leveraging existing tools such as Androwarn, FlowDroid, and Aman-
droid, as well as apktool and Androguard frameworks to identify unwanted
behaviors, and traffic analysis using the crowd-sourced Lumen mobile traffic
dataset to see app real-world behaviors. Compared to this work, we did the
same by extracting pre-installed apps from the physical device, but using ADB
commands rather than an installed app. We also performed a taint analysis using
FlowDroid, but by considering third-party libraries as well.

On the security of pre-installed Android apps in low-cost devices 5

Blazquez et al. [6] proposed FOTA (Firmware-Over-The-Air) Finder to auto-
matically classify a given APK as FOTA or not based on Androguard, using the
dataset of pre-installed apps from Firmware Scanner [14]. Then, they performed
behavior analysis relying on FlowDroid and Amandroid for a taint analysis and
a modification of Androwarn to analyze the use of API calls. This part of the
work is a bit similar to our data leak detection using FlowDroid. However, we
considered all the pre-installed apps extracted from devices, and also performed
malware detection.

Hou et al. [21] performed a study in which they collected firmware images
from vendors, official websites, and open source repositories, and CVE data to
link them with pre-installed apps. In this study, they proposed a tool named
AndScanner that automates the extraction of pre-installed apps from firmware
images before analyzing them. AndScanner proposes an analysis of the secu-
rity patches of the firmware to know if it has been patched in time and if the
security issues have been fixed. It also performs app analysis by analyzing the
pre-installed apps using Androguard to identify misconfiguration in the mani-
fest file and CryptoGuard to detect cryptography misuse. Our study is different
since we did not only focus on analyzing the manifest files, but also analyzed the
cryptography misuse. However, we leveraged on Androguard framework in our
pipeline.

More recently, Sutter and Tellenbach [33] proposed FirmwareDroid, an auto-
mated static analysis tool for pre-installed apps. This tool automates the process
of extracting pre-installed apps from firmware images and their analysis using
existing tools, including Androgurad and Exodus. The study identifies the adver-
tising tracker libraries used with Exodus and the permissions pre-installed apps
inherited with Androguard. The authors have integrated 8 open source static
analysis tools in FirmwareDroid, which could be used for further analysis.

Almost all of these studies are a bit similar since they follow almost the
same approach, such as collecting firmware from the Internet, extracting the
pre-installed apps, and analyzing them. Our approach allows the extraction of
pre-installed apps from physical devices, the detection of apps having suspicious
behaviors, the detection of data leakage, and security misconfiguration on the
Manifest files. Furthermore, our approach is particularly tested on low-cost de-
vices sold in Africa. However, with this approach, every brand and every Android
device can be inspected and analyzed. Consequently, we do not have a limitation
related to missing some brands or firmware.

4 Low-cost Android devices in Africa

Upon careful investigation of the African mobile device market, we identified
three popular brands shipping Android devices under 100 US dollars price —
Infinix, itel, and Tecno. All these devices run Android Go Edition. We acquired
7 devices in total from these brands for our study.

6 A. DIALLO et al.

4.1 Android Go Edition

Android Go Edition is a lightweight configuration of standard Android designed
for entry-level devices with limited memory (< 2 GB) and storage [17]. Android
Go ships with resource-optimized "Go" versions of Google apps, but users can
still install apps from the Play Store. Android Go may receive updates less
frequently than standard Android [32,17]. To reduce resource consumption, An-
droid Go disables several features by default [17]:

— Picture-in-picture support;

SYSTEM_ALERT_WINDOW permission (display over other apps);
— Split-screen / multi-window;

Live wallpapers;

Multi-display;

— Launcher shortcuts (deep shortcuts);

Reduced maximum width /height for images in remote views;
VR mode.

Android Go is not necessarily less secure than standard Android. In fact,
users may gain security benefits from the removal of the SYSTEM_ALERT_WINDOW
permission, which has often been abused by malicious apps [13]. We did not find
literature that evaluates the security implications of the other optimizations
introduced in Android Go. However, Android Go devices typically receive fewer
updates and have a shorter support lifecycle, which can leave users without
critical security patches [1].

Many pre-installed apps on some device brands are not available on Google
Play. They may come from unverified third-party vendors that may potentially
distribute malicious apps to the end users.

4.2 Devices and Pre-installed apps

From our seven devices (Infinix, itel, and Tecno) we extracted 1544 pre-installed
APK files, including both system and third-party apps, which form the dataset
used in this study. Most of the pre-installed apps extracted cannot be found
in the Google Play Store, as shown in Figure 1. Several brands provide their
own app stores. In particular, the Palm Store is reported to be the official app
distribution platform for Infinix, Tecno, and itel®. Palm Store is preinstalled on
the devices we examined and allows users to install, uninstall, and update apps.
According to the provider, the store performs automated and manual security
checks, compatibility testing, and content-compliance monitoring.

System apps are signed by multiple different certificate authorities, and the
dominant signer varies by device. For example, Table 1 shows that on the Infinix
SMARTS, 68% of system apps are signed by Infinix; 20% by Google; 4% by
Transsion; 2% by Tecno; 1% by Facebook; 1% with the default AOSP certificate;
and 4% by other authorities. System apps are usually found on /system/app

® Palmstore: https://www.palmplaystore.com/

On the security of pre-installed Android apps in low-cost devices 7

100 : 1
90|]
80|

70|]
60 |]
50 |]
40 |- 1
30|]
2]
10}

0

Infinix itel Tecno
Devices
Appin GooglePlay === App notin GooglePlay s

% of Apps

S

Fig.1: App present in Google Play vs. App not present in Google Play

Table 1: System apps grouped by certificate authority for some devices.

Signed by|Infinix SMARTS8|itel A50| Tecno POP8
Infinix 68% 0% 0%
itel 0% 1% 0%
Tecno 2% 1% 68%
Transsion 4% 2% 3%
Google 20% 22% 21%
Facebook 1% 1% 2%
Default 1% 1% 1%
SW 0% 0% 2%
Others 4% 2% 3%

and /system/priv-app folders. However, when extracting the APK files, we have
found that the apps have been distributed not only in these two folders, but in
several others as well. Figure 2 shows an example of the folders on Infinix. Many

/apex/com.android.uwb m
/apex/com.android.btservices m
/apex/com.android.mediaprovider
/apex/com.android.tethering mm
/system_ext/framework m
Ivendor/app
/apex/com.android.adservices
/apex/com.android.cellbroadcast
/apex/com.android.apex.cts.shim
Isystem/framework
/apex/com.android.permission
android.

Isystem/preloadapp
Japex/com.android.wifi

Y priv-app

priv-app
/product/app EE——
/apex/com.android.extservices

/system_ext/app
/system_ext/priv-app E———

Ivendor/overlay n—

0 5 10 15 20 25 30 35 40 45

Fig. 2: Location folders of the system apps in Infinix

8 A. DIALLO et al.

apps for some brands have been pre-installed based on the regional needs. For
example, the supply chain of Transsion devices suggests that Transsion works
with partners in Africa, which could pre-install apps and services tailored for
the regional needs [22]. Since many steps exist to pre-install apps, this could be
an entry point for introducing malicious apps on these devices [37].

5 Methodology

5.1 Research questions

Understanding the potential risks of pre-installed apps is essential. To guide our
research, we have established the following key questions.

RQ1: To what extent do pre-installed apps leak sensitive data on
low-cost devices? This question focuses on checking whether pre-installed apps
perform activities, such as leaking sensitive data via the Internet or using other
ways. This helps us to understand not just if these apps pose risks, but also how
they do so.

RQ2: To what extent do pre-installed apps exhibit suspicious be-
haviors on low-cost devices? The aim of this question is to determine how
widespread suspicious pre-installed apps are on affordable devices. Although pre-
vious research has shown that some of these apps may contain harmful code [38§],
a more comprehensive assessment is needed to quantify the extent of the problem
in different manufacturers and regions. Through this question, we will explore
the devices to identify apps having suspicious behaviors (including malware) as
well as those using malicious URLs.

RQ3: How prevalent are security misconfigurations in the manifest
files of pre-installed apps on low-cost devices? Through this question,
we explore apps to identify those exposing sensitive data across the exported
components.

By addressing these research questions, our study provides a clearer picture
of the security landscape around pre-installed apps on low-cost mobile devices
and highlights potential areas where better security measures are needed.

5.2 PiPLAnD Design

This section outlines the workflow of PtPLAnD, a pipeline designed to inspect
pre-installed apps using static analysis approaches. Figure 3 gives an overview of
the pipeline. The source code of PiPLAnD is available on our GitHub repository®.
We present the details of the workflow of each module in the following sections.

Data collection. We have used seven (7) low-cost Android devices in this
study. PZPLAnD first automatically extracts the pre-installed apps from a physical
device using ADB commands when we plug the device into the computer. After
extraction, we got a dataset of 1544 APK files from the overall devices. This
dataset includes system and third-party apps.

5 PiPLAnD source code: https://github.com/liounea/PiPLAnD

On the security of pre-installed Android apps in low-cost devices 9

Module 1

nod AP call-related
using LM — list Source/Sink Outputs

ot St E{f It%

Internet Apps

Pre-installed APK list Module 2

App
‘ &M Soutcacode
N
ion—>» @ .« |, Decompile |
< Extraction by D Analysis—> Do 4,‘, o
T

3
| L—

l Pattorn list ———— Outputs
- Module 3 |
v Manifest files Source codes Scmnl:a APIs

Physical device l AN p |
o <> Soot™ son
components -

Outputs

Noprotected " giagq names

Fig. 3: Overview of PiPLAnD’s workflow.

Module 1: Data leak detection.
We integrate FlowDroid into P4PLAnD to identify pre-installed apps that leak
sensitive data. FlowDroid is based on a list of sources and sinks for the detec-
tion. This list contains Android APT calls and Java methods. Thus, by default, it
cannot detect data leaked from methods other than Android API calls and Java
methods. During our study, we have noticed that there are pre-installed apps
that use custom methods from third-party libraries to send data over the Inter-
net. Because of that, we have identified apps that access to Internet by looking
for android.permission. INTERNET permission on their manifest files. For these
apps, we extracted all their methods that we have given to LLMs for source and
sink categorization. The resulting list is used, in combination with the default
list of sources and sinks, to identify Internet apps leaking sensitive data over the
Internet. The default Source and Sink list is also used for detecting other types
of data leakage in other apps.

Module 2: Behavior analysis.
The behavior analysis focuses on pattern detection. More specifically, we looked
for patterns such as "pm install”, "installPackage”, etc., to detect installa-
tion behaviors, "logcat” for apps collecting log data, "content://sms", "delete”,
"sendTextMessage", "Telephony.SMS RECFEIVED" for accessing SMS, delet-
ing, sending, and listening to received SMS, etc. Table 2 shows the full list of
the patterns we used. P¢PLAnD helps with this analysis by decompiling the APK
file using the Androguard framework and by checking for patterns that match
our list in the app code. We only consider these patterns since they are the most
obvious and are based on the existing literature, as well. Then, it reports the
findings in a JSON file. This file is used for a manual analysis to confirm the
behavior of the app based on the patterns detected in its code.

Module 3: Security misconfigurations on Manifest files.
This module allows for the identification of security misconfigurations in the
Android manifest files. In this study, we only focus on identifying components

10 A. DIALLO et al.

Table 2: The list of patterns

Behaviors Patterns

content://sms

delete

Access / Delete / Send SMS|sendTextMessage
Telephony.SMS_RECEIVED
Telephony.Sms

"am start "

"chmod "
Dangerous commands "su "

"budO "

"rm -rf "
Log collection logcat

"pm install "
Installation indicators installPackage

exported that allow access to sensitive information. Android allows restricting
access to an exported component by using permissions. We first extracted ex-
ported components from the manifest files for each app. Then, we filter out and
keep those who did not have permission to protect and restrict their access.
This gives us a list of class names with their full path in the app code. Besides
that, we have constructed a list of sensitive API calls based on the source and
sink list from FlowDroid, and from the Androwarn study [10], in which authors
look for sensitive data accessed. We explored the list containing the classes of
the exported components, and for each class, we analyzed it using the SOOT
framework [28]. For the analysis with SOOT, we used the sensitive APT list and
looked for each of them in the code of the corresponding class to know whether
this component allows access to sensitive data. If we did not find the presence of
a sensitive API in the code, our analysis program constructs a call graph (CG) of
the corresponding class to search whether the sensitive API is used in a method
called in the code of the exported component. The results are put into a JSON
file, in which we have the corresponding class, the sensitive API, and the method
where we found this API.

6 Analysis Results

In this section, we present the findings from seven (7) identified affordable devices
that are primarily used in Africa. The main goal of this study is to evaluate the
security of the pre-installed apps and to investigate the prevalence of suspicious
ones on low-cost devices. Our analysis has revealed interesting findings. Table 3
summarizes these findings. This section shows the results of the analysis by
answering the different research questions.

6.1 Apps leaking sensitive data

Mobile apps often handle sensitive data on the device. With the privileges that
pre-installed apps have, they can perform harmful activities, including leaking

On the security of pre-installed Android apps in low-cost devices 11

Table 3: Summary of the results.

Analysis Modules Behaviors # of apps (%)
Exported sensitive components|Components that allow to access sensitive data| 249 (16%)
Leak of sensitive data Leak of sensitive data 145 (9%)
Dangerous commands 226 (15%)
Log collection 10 (0.7%)
Suspicious behaviors Silent installation behaviors 33 (2%)
Access / Send / Delete SMS 79 (5%)

this data. Our analysis, consisting of identifying apps that leak sensitive data,
has identified several pre-installed apps on seven 7 different devices leaking data,
such as Mobile Country Code (MCC), user location (longitude and latitude), de-
vice info, International Mobile Subscriber Identity (IMSI), IMEI (International
Mobile Equipment Identity), etc. Sensitive data is leaked in different ways, such
as in SharedPreferences, in logs, in Intents, as well as on the network. Over-
all, we have found around 9% of the pre-installed apps on the devices leaking
sensitive data, which represent 145 pre-installed apps. As an example, the app
(com.transsion.statisticalsales) sends sensitive information to a remote host by
using third-party libraries with customized methods. As illustrated in Listing 1,
the app collects location info, IMSI, IMEI, phone version, etc., and sends them
to a remote server. Pre-installed apps also leak data using other ways, such as
SharedPreferences storage, device logs, etc. These practices expose the user to
many security and privacy problems.

Answer to RQ1

The results show that several pre-installed apps on the three devices exhibit
harmful activities such as leaking sensitive data, exposing the users to severe
risks.

6.2 Suspicious behaviors on pre-installed apps

Since mobile devices come with pre-installed apps, these may contain harmful
code that can compromise the security of users [38]. We have looked for apps hav-
ing suspicious behaviors. Several pre-installed malware have been identified to
have silent installation behaviors [38]. Others steal sensitive data using different
ways [38, 35, 9]. To identify these kinds of malware, we focus the analysis on de-
tecting patterns. When a pre-installed app declares the INSTALL PACKAGES
permission, it has the ability to install an app without the user’s knowledge. It
can use android.content.pm.PackageManager.installPackage() or Runtime.ezec(
‘pm. install’) to silently install the app [38]. Our analysis has revealed 33 pre-
installed apps having this silent installation behavior on the overall devices.

12

W N

o

A. DIALLO et al.

L

]
public class SSHttpClient {

public static final String BASE_URLFLAG = "PCHttpClient";

private static final String DEFAULT_BASE_SERVER =
"https://asv.transsion.com:443/SaleStatistics/sendsale/sendSale";
private static final String DEFAULT_INDIA_SERVER =
"https://asvin.transsion.com:8080/SaleStatistics/sendsale/sendSale";

s
—
L.

—

boolean z) {
RequestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams
requestParams

.put("ua",
.put("screen", this.requestInfo.getScreen());
.put("imsi", this.requestInfo.getImsi());
.put("imei", this.requestInfo.getImei());
.put ("phone_version",
.put("platform", this.requestInfo.getPlatform());
.put("device", this.requestInfo.getDevice());
.put("lang", this.requestInfo.getLang());

.put ("timeStamp", this.requestInfo.getTimeStamp());
.put("auth", this.requestInfo.getAuth());

.put("lat", this.requestInfo.getLat());

.put("lng", this.requestInfo.getLng());
.put("client_type", this.requestInfo.getClient_type());
.put ("phone", this.requestInfo.getPhone());
.put("client_version",
.put("lac", this.requestInfo.getCELL_LAC());
.put("cid", this.requestInfo.getCELL_CID());
mClient.post(z ? DEFAULT_INDIA_SERVER :

protected static final String TAG = "SSHttpClient_";
]

public void RegisterInformation(final HttpCallback<HttprequestResult> httpCallback,

requestParams = new RequestParams();
this.requestInfo.getUa());

this.requestInfo.getPhone_version());

this.requestInfo.getClient_version());

< AsyncHttpResponseHandler() {
[...]

B

Listing 1: App sending sensitive data to a remote server

DEFAULT_BASE_SERVER, requestParams, new

Several pre-installed apps have access to the SMS provider content://sms. Some
of them delete SMS or declare the SEND SMS and RECEIVE SMS permis-
sions with the broadcast action Telephony.SMS RECEIVED, allowing them to
listen and send messages. We have found around 79 apps pre-installed on these
low-cost devices, sending, deleting, and/or reading SMS contents. Furthermore,
at least 10 pre-installed apps can access and collect the logcat content. Since
they have déclared the READ LOGS permission, they can access the overall
logcat content, including logs from other applications. In addition to this, we
have found several apps that execute dangerous commands (226 apps).

Answer to RQ2

Low-cost Android devices ship pre-installed apps with suspicious behaviors,

including sending/deleting/reading SMS, executing dangerous commands, ac-
cessing overall logcat memory, and having silent installation behaviors.

On the security of pre-installed Android apps in low-cost devices 13

6.3 Security misconfigurations on the manifest files

Exported sensitive components. Android apps often export components,
such as activities, services, receivers, and providers, explicitly by setting an-
droid:exported="true" or implicitly by declaring an intent-filter in the manifest
file. When it is the case, the app allows other apps to launch the component [18§].
The access to exported components is often restricted using permissions [19]. If
there is permission for an exported component, the app that wants to launch
it should declare this permission. If an app exports a component without prop-
erly enforcing permission, any app could launch it or access sensitive data it
contains’. When a component allows access to sensitive data, we call it a sensi-
tive component. Our analysis has revealed that several pre-installed apps have
sensitive components exported. As illustrated in Table 3, we have found around
16% of the pre-installed apps, representing 249 different app versions, that have
exported sensitive components on the low-cost devices, without any restriction
or protection mechanism. It means that these devices embed apps that allow
other apps to potentially access sensitive information, exposing the user to se-
curity and privacy problems. For example, we have found a pre-installed app
(com.transsion.carlcare) having this method (Listing 2), from an exported ac-
tivity (com.transsion.carlcare. WarrantyCardActivity). This method allows access
to location information (lines 13 and 14). In the Android manifest file of the app,
this component is clearly exported; however, it is protected by no mechanism,
facilitating its easy access and its potential exploitation. Another example shows
an exported ContentProvider (com.sprd.providers.photos.Special TypesProvider)
found in the app (com.sprd.providers.photos) that allows access to media files,
contained in an external storage, from a URI (Listing 3, line 10). This exported
component does not have a mechanism that restricts its access by other apps.

Answer to RQ3

The results have revealed several pre-installed apps exporting sensitive compo-
nents, including activities, services, content providers, and receivers, on low-cost
devices. This potentially puts users at risk, as their data could be accessed by
third parties.

" CWE-926: https://cwe.mitre.org/data/definitions/926.html

14 A. DIALLO et al.

1 public void R1() {

2 [...]

3 HashMap<String, String> map = new HashMap<>();

4 if (TextUtils.isEmpty(this.f15263g0)) {

5 map.put ("imei", listA.get(0));

6 } else {

7 map.put("imei", this.f15263g0);

8

9 map.put ("imsi", wd.c.g());

10 map.put("lang", getResources().getConfiguration().locale.

11 toString());

12 if (this.f15282z0 '= null) {

13 map.put("lat", this.f15282z0.getLatitude() + "");

14 map.put("lng", this.f15282z0.getLongitude() + "");

15

16 map.put ("phone_version", a2());

17 map.put ("screen", getResources().getDisplayMetrics().widthPixels + "x" +
— getResources().getDisplayMetrics() .heightPixels);

18 map.put("ua", Build.BRAND + "-" + Build.MODEL);

19 [...1

20 }

Listing 2: Exported activity accessing sensitive information

1 [...]
2 public final class SpecialTypesProvider extends ContentProvider {
3
4 private static final Uri EXTERNAL_CONTENT_URI = MediaStore.Files.getContentUri("external");
5 private static final String[] SPECIAL_TYPE_PROJECTION = {"_data", "owner_package_ name"};
6 [...]
7 private int getCameraType(long j) {
8 Log.d(TAG, "mediaStoreId = " + j);
9 boolean z = true;
10 Cursor cursorQuery = getContext().getContentResolver().query(EXTERNAL_CONTENT_URI, SPECIAL_TYPE_PROJECTION, "_id=7",
< new String[]{String.value0Df(j)}, null);
11 if (cursorQuery != null) {
12 try {
13 if (cursorQuery.moveToFirst()) {
14 String string = cursorQuery.getString(0);
15 Log.d(TAG, "mediaPath = " + string);
16 String string2 = cursorQuery.getString(1);
17 if (!GOOGLE_PHOTOS_PACKAGE_NAME.equals(string2) && !GOOGLE_GALLERY_PACKAGE_NAME.equals(string2)) {
18 z = false;
19
20 Log.d(TAG, "ownerPackageName = " + string2 + ", isGoogleCreatedImage = " + z);
21 try {
22 ExifInterface exiflInterface = new ExiflInterface();
23 exifInterface.readExif (string);
24 iIntValue = z 7 O : exifInterface.getTagIntValue(ExifInterface.TAG_CAMERATYPE_IFD). intValue();
25 Log.d(TAG, "getCameraType cameraType = " + ilntValue);
26 } catch (Exception e) {
27 Log.d(TAG, "Exception occurs, mediaPath = " + string + ". ex = " + e);
28
29 3
30 } finally {
31 if (cursorQuery != null) {
32 cursorQuery.close();
33
34 }
35 }
36 return iIntValue;
37
38 [...]
39 }

Listing 3: Exported ContentProvider accessing external storage files

7 Discussion

In this section, we discuss the results from the analysis of the devices.

On the security of pre-installed Android apps in low-cost devices 15

Sensitive data leakage. During our analysis, we have found several pre-
installed apps leaking sensitive data. Several of them send the data to a remote
host by using Android API calls. Others use third-party libraries that use cus-
tomized methods to avoid existing detection (e.g, com.transsion.statisticalsales).
We have considered these customized methods and added them to FlowDroid,
and we have detected apps sending sensitive data over the Internet with these
methods. Considered as malware by some blog posts [7], the app (com.transsion.
statisticalsales) is not detectable by malware scanners such as VirusTotal. It
silently collects data (phone version, IMSI, user location, CID (Cell Tower ID),
LAC (Location Area Code), etc.) and sends it to a remote host. This suspicious
behavior compromises users’ security and privacy. Several other apps get and
store sensitive data in internal storage, such as SharedPreferences, or log it in
the logcat memory. These leaked data can be used by malicious actors for user
profiling, user tracking [5], or accessed by other apps since pre-installed apps can
share each other’s data when they have the same sharedUserld and have signed
with the same certificate [38].

Suspicious behaviors. We have found several pre-installed apps having sus-
picious behaviors, including silent installation behavior, sending/deleting SMS,
etc. These are done without the user’s knowledge and may have negative conse-
quences. Indeed, when an app is able to install another app silently, it may install
a malicious app from a malicious remote server or via dynamic code loading. This
technique is often used by malicious actors to infect Android devices and avoid
detection [38]. This is possible only with system apps, since non-system apps
cannot declare the required permission. When a pre-installed app has the ability
to send and delete messages without the user’s interaction, this can lead to the
theft of sensitive data. Several malware are known to use this technique. For
instance, a variant of the Triada malware has been found pre-installed in An-
droid devices [35]. This malware performs several actions, among which we have
enabling premium SMS services, intercepting, sending, and deleting messages.

Security misconfiguration. Our analysis has revealed several apps ex-
porting components that allow other apps to potentially access sensitive data,
without any protection. The Android framework proposes permission levels, in-
cluding normal, dangerous, and signature, to protect and restrict access to com-
ponents [16]. The absence of protecting exported components is a known vul-
nerability from the community [16]. When an app exports a component without
any restriction, it allows other apps to access it. From this, a malicious app may
access sensitive resources, as mentioned in the Common Weakness Enumera-
tion (CWE - 926). The app can be victim to an attack named confused deputy
attack [12,14], as well as a malicious app can abuse the privileges that these
components have to gain unauthorized access to these resources [16, 29].

8 Conclusion

This study investigates and analyzes Android pre-installed apps, in particular,
those shipped with phones sold in Africa. For this purpose, we have proposed

16 A. DIALLO et al.

a pipeline that allows the extraction of APK files from a physical device and
inspects them to look for different suspicious behaviors, including pre-installed
malware, apps exposing sensitive data, and apps sending personal data to re-
mote hosts. The pipeline is tested by inspecting three different low-cost Android
devices bought in Africa. The results show interesting findings, such as (1) the
leak of sensitive data, (2) sensitive data exposure through exported components,
and (3) apps having suspicious behaviors. As future research, we planned to go
deeper into these pre-installed apps by analyzing the URLs they use to identify
malicious ones, the native libraries used, and by looking for further suspicious
behaviors. Our future study will extend the number of low-cost devices and
compare the results from the analysis of pre-installed apps with those from Eu-
ropean devices, as well. In addition, we planned to perform a dynamic analysis
by implementing a solution that monitors the system log and detects suspicious
behaviors using Al models.

References

1. Acar, A., Tuncay, G.S., Luques, E., Oz, H., Aris, A., Uluagac, S.: 50 shades of
support: A device-centric analysis of android security updates. In: Netw. Distrib.
Syst. Security Symp., San Diego, CA, USA (2024)

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon,
Y., Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In: Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 259-269. PLDI ’14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2594291.2594299, https:
//doi.org/10.1145/2594291.2594299

3. BARTON, J.: Orange releasing android-powered ultra-low cost smartphone for
africa (2020), https://developingtelecoms.com/telecom-technology/teleco
m-devices-platforms/10053-orange-releasing-android-powered-ultra-low
-cost-smartphone-for-africa.html

4. BBC: Chinese phones with built-in malware sold in africa (2020), https://wuw.
bbc . com/news/technology-53903436

5. Becenti, M.: Leaky apps: How they're stealing your data without you knowing
(2024), https://www.quokka.io/blog/leaky-apps-security-risks

6. Blazquez, E., Pastrana, S., Feal, A., Gamba, J., Kotzias, P., Vallina-Rodriguez,
N., Tapiador, J.: Trouble over-the-air: An analysis of fota apps in the android
ecosystem. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1606—
1622 (2021). https://doi.org/10.1109/SP40001.2021.00095

7. Bobe, B.: Statisticalsales — the malware pre-installed on your phone (2024), http
s://medium.com/@threatspotlight/episode-5-statisticalsales-417al14e0f
75a

8. Canalys: African smartphone market surges 24% in g4 2023, despite macro head-
winds (2024), https://www.canalys.com/newsroom/africa-smartphone-marke
t-Q4-2023

9. Cimpanu, C.: Triada trojan found in firmware of low-cost android smartphones
(2017), https://www.bleepingcomputer.com/news/security/triada-trojan-£
ound-in-firmware-of-low-cost-android-smartphones/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

On the security of pre-installed Android apps in low-cost devices 17

Debize, T.: Androwarn: Yet another static code analyzer for malicious android
applications (2012), https://github. com/maaaaz/androwarn

Elsabagh, M., Johnson, R., Stavrou, A., Zuo, C., Zhao, Q., Lin, Z.: FIRMSCOPE:
Automatic uncovering of Privilege-Escalation vulnerabilities in Pre-Installed apps
in android firmware. In: 29th USENIX Security Symposium (USENIX Security
20). pp. 2379-2396. USENIX Association (Aug 2020), https://www.usenix.org
/conference/usenixsecurity20/presentation/elsabagh

Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. p. 22. SEC’11, USENIX Association, USA (2011)
Fratantonio, Y., Qian, C., Chung, S.P., Lee, W.: Cloak and dagger: from two
permissions to complete control of the ui feedback loop. In: 2017 IEEE Symposium
on Security and Privacy (SP). pp. 1041-1057. IEEE (2017)

Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-
Rodriguez, N.: An analysis of pre-installed android software. In: 2020
IEEE Symposium on Security and Privacy (SP). pp. 1039-1055 (2020).
https://doi.org/10.1109/SP40000.2020.00013

GOODIN, D.: Potentially millions of android tvs and phones come with malware
preinstalled (2023), https://arstechnica.com/information-technology/2023
/05/potentially-millions-of-android-tvs-and-phones-come-with-malware
-preinstalled/

Google: Permission-based access control to exported components (2024), https:
//developer.android.com/privacy-and-security/risks/access-control-t
o-exported-components

Google: Android (Go edition) (2025), https://developer.android.com/guide/
topics/androidgo

Google: android:exported (2025), https://developer.android.com/privacy-and
-security/risks/android-exported

Google: App components (2025), https://developer.android.com/guide/topi
cs/manifest/manifest-intro#components

Google: Play Protect Certified Android devices: safe and secure (2025), httphttps:
//www.android.com/certified/

Hou, Q., Diao, W., Wang, Y., Liu, X., Liu, S., Ying, L., Guo, S., Li, Y., Nie,
M., Duan, H.: Large-scale security measurements on the android firmware ecosys-
tem. In: 2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE). pp. 1257-1268 (2022). https://doi.org/10.1145/3510003.3510072

Hu, A.: From mobile king in africa to e-scooter giant? transsion’s next big move
(2025), https://wuw.exportsemi.com/company-post/from-africa-phone-kin
g-to-e-bikes-can-transsion-work-another-miracle/

Hutchinson, R.: How to delete pre-installed android apps from your smartphone
(2024), https://www.geeky-gadgets.com/how-to-delete-pre-installed-and
roid-apps-from-your-smartphone/

kaspersky: Malware attacks in africa are increasing, reaching 85 million in only 6
months (2021), https://kaspersky.africa-newsroom.com/press/malware-att
acks-in-africa-are-increasing-reaching-85-million-in-only-6-months?
lang=en

Kurt Knutsson, C.R.: Fbi warns over 1 million android devices hijacked by malware
(2025), https://wuw.foxnews.com/tech/fbi-warns-over-1-million-android
-devices-hijacked-malware.amp

LABOR, U.D.O.: Guidance on the protection of personally identifiable information
(pii), https://www.dol.gov/general/ppii

18

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

A. DIALLO et al.

Lakshmanan, R.: Chinese android phones shipped with fake whatsapp, telegram
apps targeting crypto users (2025), https://thehackernews.com/2025/04/chin
ese-android-phones-shipped-with.html

Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infastructure Work-
shop (CETUS 2011). vol. 15 (2011)

Magsood, H.M.A., Qureshi, K.N., Bashir, F., Islam, N.U.: Privacy leakage through
exploitation of vulnerable inter-app communication on android. In: 2019 13th Inter-
national Conference on Open Source Systems and Technologies (ICOSST). pp. 1-6
(2019). https://doi.org/10.1109/ICOSST48232.2019.9043935

Mitchell, M., Tian, G., Wang, Z.: Systematic audit of third-party android phones.
In: Proceedings of the 4th ACM Conference on Data and Application Security
and Privacy. p. 175-186. CODASPY ’14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2557547.2557557, https:
//doi.org/10.1145/2557547 .2557557

Ng, A.: Android malware that comes preinstalled is a massive threat (2019), https:
//www.cnet.com/tech/mobile/android-malware-that-comes-preinstalled-a
re-a-massive-threat/

Sharma, S.: Android go vs regular android — which is right for your business app?
(2025), https://www.appventurez.com/blog/android-go-apps-vs-regular-a
pps

Sutter, T., Tellenbach, B.: Firmwaredroid: Towards automated static analysis of
pre-installed android apps. In: 2023 IEEE/ACM 10th International Conference on
Mobile Software Engineering and Systems (MOBILESoft). pp. 12-22 (May 2023).
https://doi.org/10.1109/MOBILSof{t59058.2023.00009

TIMESOFINDIA: These android phones come with dangerous pre-installed apps
(2019), https://timesofindia.indiatimes.com/gadgets-news/these-android
-phones-come-with-dangerous-pre-installed-apps/articleshow/72110567.c
ms

Toulas, B.: Counterfeit android devices found preloaded with triada malware
(2025), https://www.bleepingcomputer.com/news/security/counterfeit
-android-devices-found-preloaded-with-triada-malware/

TRUSTONIC: Closing the digital divide with android smartphones in africa (2021),
https://www.trustonic.com/opinion/closing-the-digital-divide-with-and
roid-smartphones-in-africa/

upstream: xhelper/triada malware pre-installed on thousands of low cost chinese
android devices in emerging markets (2020), https://www.upstreamsystems.co
m/press/press-releases/xhelper-triada-malware-pre-installed-on-thous
ands-of-low-cost-chinese-android-devices-in-emerging-markets/

Zheng, M., Sun, M., Lui, J.C.: Droidray: a security evaluation system for
customized android firmwares. In: Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security. p. 471-482. ASIA
CCS ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2590296.2590313, https://doi.org/10.1145/259029
6.2590313

