RAML: Toward Retrieval-Augmented
Localization of Malicious Payloads in Android Apps

Tiezhu Sun', Marco Alecci!, Yewei Songl, Xunzhu Tangl, Kisub Kim?
Jordan Samhi!, Tegawendé F. Bissyandé', Jacques Klein'

'University of Luxembourg, Luxembourg
2DGIST, Korea
{firstname.lastname}@uni.lu, kisub.kim@dgist.ac.kr

Abstract—Android malware detection and family classification
have been extensively studied, yet localizing the exact malicious
payloads within a detected sample remains a challenging and
labor-intensive task. We propose RAML, a novel Retrieval-
Augmented Malicious payload Localization pipeline inspired by
retrieval-augmented generation (RAG), which leverages large lan-
guage models (LLMs) to bridge high-level behavior descriptions
and low-level Smali code. RAML generates class-level descriptions
from Smali code, embeds them into a vector database, and
performs semantic retrieval via similarity search. Matched can-
didates are re-ranked with LLM assistance, followed by method-
level LLM analysis to precisely identify malicious methods and
provide insightful role explanations. Preliminary results show
that RAML effectively localizes corresponding malicious payloads
based on behavioral descriptions, narrows the analysis scope,
and reduces manual effort—offering a promising direction for
automated malware forensics.

Index Terms—Android Malware Analysis, Malicious Payload
Localization, Retrieval-Augmented Generation

I. INTRODUCTION

Android powers billions of devices and supports a vast
app ecosystem [/1]], but its openness also creates a signif-
icant attack surface. Android malware continues to evolve,
employing sophisticated evasive techniques to evade traditional
static and dynamic analyses [2], [3[]. Consequently, accurately
localizing malicious payloads within apps remains technically
challenging, requiring novel approaches to reason about code
semantics under adversarial conditions.

Despite progress in malware detection [4]-[9] and family
classification [10]-[14], existing techniques rarely provide
fine-grained, code-level insights. Most models lack explicit
localization capabilities and operate as black boxes, reduc-
ing interpretability and hindering analysts’ ability to extract
meaningful features and validate predictions. This limitation
restricts their effectiveness in practical, security-critical sce-
narios. Prior works [[15]], [[16]] have explored class-level local-
ization of malicious payloads, but they offer limited precision
in pinpointing specific malicious code and fail to provide de-
tailed descriptions of how identified payloads behave. Recently,
large language models (LLMs) have been applied to Android
malware analysis, but existing approaches primarily focus on
detection rather than precise payload localization [17], [18].

To address these limitations, we introduce RAML, a novel
Retrieval-Augmented Malicious payload Localization ap-

proach. Inspired by recent advances in retrieval-augmented
generation (RAG) [19]], [20], RAML leverages LLMs to pre-
cisely localize malicious payloads at the method level and
provide meaningful explanations. It is designed to assist human
experts by bridging the gap between family classification and
actionable malware defense.

RAML leverages malware family knowledge to efficiently
localize malicious payloads, supporting human analysts by re-
ducing the need for manual analysis. Given a malware sample
and its predicted family label, RAML retrieves behavior queries
(see Section for an example query) from a predefined
family-behavior lookup table to guide the localization process.
It then applies a retrieval-augmented localization approach: it
first uses an LLM to generate natural-language descriptions of
Smali classes (i.e., a low-level representation of Android byte-
code), which are embedded and indexed in a vector database
for semantic similarity search against each behavior query.
Matched candidates undergo LLM-based re-ranking, followed
by method-level LLM analysis to pinpoint specific malicious
methods and explain their functionalities. This pipeline enables
precise, interpretable localization guided by malware family
insights. To the best of our knowledge, this is the first work
to apply the RAG paradigm to bridge high-level behavioral
descriptions and low-level Smali code semantics for localizing
malicious payloads in Android malware.

A major challenge in evaluating malicious payload local-
ization is the lack of ground-truth datasets with fine-grained
annotations. To address this, we developed LocApp, a cus-
tom Android app that implements several common malicious
behaviors, such as privacy theft and aggressive advertising,
with precise ground-truth annotations for controlled, quanti-
tative evaluation. We further assess RAML on a real-world
malware sample from MalRadar [21], manually validating its
predictions. Experimental results demonstrate the effectiveness
of RAML in delivering accurate and explainable payload
localization. We believe this work can inspire future directions
in dynamic modeling of localized payloads, interpretable mal-
ware detection, and behavior-driven mitigation strategies.

The contributions of this work are summarized as follows:

« We propose a novel retrieval-augmented framework that

bridges high-level family behavior knowledge with low-
level Smali code to localize malicious payloads. Unlike

prior works, RAML provides method-level localization and
human-readable behavioral explanations.

« We develop a demo app and analyze a real-world malware
sample, enabling preliminary method-level evaluation and
demonstrating RAML ’s potential to enhance both precision
and interpretability in malware analysis.

« We publicly release the dataset and source code of RAML
at: |https://github.com/Trustworthy-Software/RAML

II. BACKGROUND

Android Malware Analysis. Learning-based approaches have
greatly advanced Android malware detection and family classi-
fication over the past decade [4], [6], [22]-[24], with recent
efforts exploring large language models (LLMs) [17], [18].
Despite this progress in foundational stages, these approaches
alone are insufficient for enabling effective malware defense. A
critical, yet under-explored next stage is fine-grained malicious
payload localization, i.e., identifying and interpreting specific
methods or code segments responsible for malicious behaviors.
In practice, such payloads may appear as standalone methods or
be interleaved within benign ones, which complicates precise
identification and can obscure small but critical malicious
instructions. Without this capability, security analysts lack the
necessary insight to fully understand, explain, and defend
against malware attacks. Our work addresses this gap: the
core novelty of RAML lies in providing precise localization
and behavioral explanations, thereby bridging foundational
detection/classification stages and actionable malware defense.
Smali Code. Android apps are typically written in Java or Kotlin
and compiled into Dalvik Executable (DEX) bytecode [25],
stored in .dex files within APKs. Since APKSs rarely include
source code, high-level inspection is often infeasible. Instead,
tools like ApkToo1 [26] decompile DEX into Smali, a low-level
but human-readable format. Smali serves as a practical interme-
diate for behavior analysis when source code is unavailable.
Recent work shows that LLMs can effectively interpret Smali
code [27], which further motivates our Smali-based approach.

III. ApPROACH

We begin by introducing a baseline, followed by our proposed
RAML approach.
Baseline. We implement a baseline approach to illustrate the
limitations of direct LLM prompting without retrieval. It applies
an LLM to scan every Smali class in an app to identify and
explain malicious behaviors from a predefined list. This list
includes 12 distinct behavior types curated from MalRadar [21]],
a high-quality benchmark of real-world Android malware with
manually verified family labels. These 12 behaviors span all 148
malware families in the dataset, as each family is associated with
specific behaviors from this list. The behavior list and prompt
template used in the baseline are shown in Figure

As we show later in Section the approach above
fails to accurately localize malicious behaviors. Our analysis
attributes this to the complexity of the task and the lack of
sufficient contextual guidance. In particular, the baseline prompt
implicitly asks the LLM to perform three tasks at once: Tusk @

Context:
You are an expert in Android malware analysis. Analyze the following Smali class
and determine if it implements any malicious behaviors.

Input — Smali Class:
{class_content}

Possible Malicious Behaviors:

1. Privacy Stealing; 2. SMS/CALL Abuse; 3. Remote Control;

4. Bank/Financial Stealing; 5. Ransom; 6. Accessibility Abuse;

7. Privilege Escalation; 8. Stealthy Download; 9. Aggressive Advertising; 10.
Miner; 11. Tricky Behavior; 12. Premium Service Abuse.

Instruction:

Use the following format:

IS_MALICIOUS: <yes or no>

CONFIDENCE: <confidence score 0-100>
EXPLANATION: <detailed explanation>
BEHAVIOR: <comma-separated behaviors>

METHOD: <method signature>
ROLE: <role description>
METHOD: <...>

ROLE: <...>

Fig. 1. The prompt template of the baseline approach.

decide whether the input Smali class is malicious or benign; Task
 identify which behaviors are present if malicious; and Task
® localize the specific methods responsible. These challenges
highlight the need for a more structured and guided approach,
which we introduce hereafter.

RAML. To address the limitations of the baseline, as illustrated
in Figure 2} RAML decomposes these tasks into a multi-stage
retrieval process.

Smali Class Representation. To facilitate initial analysis,
RAML first processes each Smali file by removing debug
information, comments, and metadata. It then extracts key
details such as class names, method definitions, and Android
permissions. An LLM is used to generate natural-language
descriptions for each class, summarizing its functionality and
highlighting potential indicators of malicious behavior. — This
addresses Task ® (malicious vs. benign classification) by pro-
viding interpretable summaries without premature judgment.

Vector Database Construction. Each class description is em-
bedded using an embedding model and stored in a Chroma [28]
vector database alongside metadata. This structure enables effi-
cient semantic search across all classes, significantly narrowing
the search space for downstream analysis. — RAML avoids
repeatedly scanning the entire app when localizing multiple
behaviors—since the vectorized representation can be reused
across multiple distinct behavior queries.

Retrieval-Augmented Localization. For each malware sam-
ple, behavior queries are obtained from a predefined family-
behavior lookup table based on its family label. These queries are
carefully crafted to reflect the 12 behavior categories illustrated
in Figure|l| Below is an example query:

SMS/CALL Abuse: - Methods that manipulate SMS and phone call
functionality:

(1) - Sending SMS messages without user consent

(2) - Intercepting/blocking incoming SMS (especially 2FA messages)

(3) - Deleting SMS messages (to hide evidence)

(4) - Making calls without user awareness

(5) - Monitoring call logs

Look for: SMS manager operations, broadcast receivers for SMS/calls,
telephony API usage, SMS deletion commands.

https://github.com/Trustworthy-Software/RAML

Indexing

& :
m CHO N
' ' TioL — Embedding Vector
LLM Model Database
Smali Files Class - Similarity
Malware e
(Classes) Descritions :'\ Search
=
s R = =
Behavior
@0
Malicious Role
Method 1 Description 1 S .
— G Method-level =, | LLMReranking |
Y 01 LLM Analysis Lo’ & —
ici Rol — = < —
e @, . + @)
. Localized (+)
L Y,
Verification - Malicious Classes RErm— Matched Candidate
a Smali Classes
0
Malicious o

Method N Description 3

Fig. 2. The overview of RAML Pipeline.

Given one such query, RAML performs two-phase retrieval:

o Phase 1 — Semantic Search: The behavior query is vec-
torized using the embedding model and compared against
the vector database of class descriptions. This identifies
candidate classes with semantically similar functionality
based on cosine similarity.

e Phase 2 — LLM Re-ranking: An LLM re-ranks the top
candidates by analyzing their relevance to the specific
behavior, assigning scores and generating explanations.

— This addresses Task @ (behavior identification) by narrow-
ing and validating candidate classes per behavior.

Method-Level Analysis. For each behavior-relevant class,
RAML performs method-level analysis, where an LLM reviews
each method in context and identifies those involved in im-
plementing the target behavior. It also provides role-specific
explanations and confidence scores. — This addresses Task ©
(method localization) with fine-grained, interpretable outputs.

Through structured decomposition, RAML overcomes the
baseline’s ambiguity and overload, enabling precise and ex-
plainable malicious payload localization guided by high-level
behavior descriptions. All prompt templates and behavior
queries used in our approach are available in the replication
package.

IV. EXPERIMENTS
A. Apps Under Analysis

Due to the lack of fine-grained ground-truth datasets for
malicious payload localization, we evaluate RAML on two
representative Android apps: @ LocApp, a controlled demo
app, and @ a real-world malware sample from the MalRadar
benchmark.

1) LocApp: The developer code of LocApp contains 51 Smali
classes and 165 methods, implementing three controlled mali-
cious behaviors: Privacy Stealing (extracting and transmitting

contact data), Aggressive Advertising (fake click generation),
and Tricky Behavior (app hiding and icon manipulation). The
app provides precise method-level ground truth to facilitate
reliable, quantitative evaluation. All external functionalities are
simulated for safety and ethical compliance.

2) RuMMs App: We selected a samll representative malware
sample from MalRadar’s largest family, RuMMs, annotated with
five malicious behaviors: Privacy Stealing, SMS/CALL Abuse,
Remote Control, Bank/Financial Stealing, and Tricky Behavior.
The APK includes 21 classes and 66 methods, requests multiple
sensitive permissions (e.g., READ_CONTACTS, SEND_SMS),
and masquerades as an MMS/SMS messenger. Manual verifi-
cation of the generated localization outputs was performed to
assess RAML’s accuracy and interpretability, highlighting its
robustness in analyzing real-world malware.

B. Results

TABLE I
COMPARISON OF BASELINE AND RAML oN LocArrp.

Approach C-Prec C-Rec C-F1 M-Prec M-Rec M-F1

Baseline 0.67 0.67 0.67 0.70 0.58 0.64

RAML 0.75 1.00 0.86 0.71 1.00 0.83

1) LocApp: For evaluation, we used OpenAl’s
text-embedding-ada-002 for embeddings and

GPT-4.1 as the LLM [29]. Table [I| presents the results,
where C- and M- denote class- and method-level metrics:
Precision, Recall and F1 Score. True positives (TP) indicate
a correctly identified malicious class or method with the
correct behavior label. False positives (FP) refer to benign
components incorrectly flagged or behaviors mislabeled, while
false negatives (FN) are missed malicious components.

The baseline performs poorly across almost all metrics.
In contrast, RAML substantially improves performance by

Class: Lorg/regular/random/b; (obfuscated)

Behavior: Privacy Stealing

Method: .method public static

f (Landroid/content/Context;)Ljava/util/ArrayList;
Confidence Score: 100

Role: Reads the device’s contact list (names and phone numbers) from the
contacts content provider, which is a typical data theft behavior.

Method: .method public static

b (Landroid/content/Context; ILjava/lang/String;)V
Confidence Score: 95

Role: Collects device identifiers (android _id), packages arbitrary data (potentially
exfiltrated), encodes it, and forwards it for transmission—indicative of data
exfiltration.

Method:

Fig. 3. An example prediction by RAML, illustrating class-level behavior and
method-level role explanations.

integrating the same LLM within our retrieval-augmented
framework. As shown in Table Il RAML achieves perfect
recall—capturing all malicious classes and methods—alongside
improved precision and F1. This is especially valuable for
manual verification, ensuring no critical behaviors are missed.
RAML flags 4 classes and 19 methods as malicious, out of 165
total methods in the app—reducing the analyst’s review scope by
88.5%. This underscores its effectiveness in supporting accurate
and efficient malicious payload localization.

2) RuMMs App: We further evaluate RAML on the se-
lected real-world malware sample from the RuMMs family.
While MalRadar does not provide method-level annotations,
our manual analysis—cross-checking API calls, control flow,
and semantics against known malicious behaviors—indicates
that RAML can reliably identify the five annotated malicious
behaviors. Specifically, RAML accurately localizes 7 malicious
classes and 25 malicious methods among the app’s total of
21 classes and 66 methods, achieving 100% precision at both
class and method levels. Key localized behaviors include contact
data exfiltration (Privacy Stealing), unauthorized SMS sending
(SMS/CALL Abuse), persistent background services and remote
interaction (Remote Control), and auto-clicking consent dialogs
(Tricky Behavior). An example prediction is shown in Figure[3}

These results highlight RAML’s capability for precise and
interpretable localization, even in obfuscated, real-world mal-
ware scenarios. Despite the absence of formal ground truth,
its predictions closely align with expert analysis, demonstrating
strong potential to support practical malware inspections.

V. DiscussioN

We reflect on the key insights from our evaluation and outline
future directions for advancing Android malware analysis.
Insights. Rather than aiming for full automation, our goal is
to assist human analysts by narrowing the search space and
reducing the manual effort to identify and interpret malicious
behaviors. A key feature of RAML is the generation of natural-
language role explanations for each analyzed method, clarifying
how individual methods contribute to the overall malicious
behavior of the app. One of the critical design choices in RAML
is its two-level localization approach: first at the class level,
then refined to the method level. This granularity is essential

because many malicious methods, when analyzed in isolation,
may appear benign or unrelated to any malicious activity.

For example, in the RuMMs App we
analyzed, we identified a method named
org.regular.Random.Bee.onHandleIntent (),
which intercepts intents related to receiving SMS messages.
This behavior is not inherently malicious—it is common in
legitimate applications. However, in the context of a high-level
behavior such as “SMS/CALL Abuse”, the method becomes
highly significant. Here, RAML’s role_explanation
proves especially valuable. In this case, the explanation
describes the method as: “Entry point for the service; routes
incoming intents to the appropriate handler (either SMS
interception or command execution)”. Such contextualization
enables analysts to understand the method’s role within a larger
malicious workflow. By providing step-by-step insight into
how each method contributes to malicious payloads, RAML
supports the reconstruction of complex behaviors and aids
in forensic analysis, even when the malicious logic is spread
across multiple, superficially innocuous methods.

While our evaluation demonstrates promising precision and

explainability, further research is needed to validate whether
such performance generalizes to more complex, diverse, or
heavily obfuscated real-world malware scenarios.
Research Outlook. We envision RAML’s retrieval-augmented
localization as a foundation for downstream Android security
tasks such as dynamic behavior modeling, explainable malware
detection, and behavior-specific mitigation. This work can
foster more interpretable, context-aware analysis, strengthening
the synergy between software engineering and security while
integrating LLM-based reasoning into practical workflows.
Beyond malicious behavior, the pipeline could also aid Android-
specific tasks like detecting policy violations, compliance issues,
or misuse of sensitive data.

VI. CoNcLUSION

We presented RAML, a novel retrieval-augmented framework
for fine-grained localization of malicious payloads in Android
apps. Unlike traditional work primarily focused on coarse-
grained detection or family classification, RAML offers deeper
insights by localizing malicious logic precisely at the class and
method levels, accompanied by clear, functional explanations.
Future Work. We identify several promising research direc-
tions. First, we plan to broaden our evaluation by including
additional LLMs (particularly open-source models) and a wider
variety of real-world malware samples to better assess general-
izability across diverse behaviors and obfuscation techniques.
Second, we aim to conduct ablation studies to thoroughly
understand each component’s impact. Finally, we will explore
strategies to enhance RAML’s efficiency and scalability, espe-
cially for analyzing large, complex Android applications.

ACKNOWLEDGMENT

This research was funded in whole or in part by the
Luxembourg National Research Fund (FNR), grant references
16344458 (REPROCESS) and 18154263 (UNLOCK).

[1]

[2

—

[3

=

[4]

[5]

[6

=

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

A. Turner, “How many android wusers are there? global
and us statistics (2025),” https://www.bankmycell.com/blog/
how-many-android-users-are-there, 2025, accessed: June 2025.

P. Faruki, R. Bhan, V. Jain, S. Bhatia, N. El Madhoun, and R. Pamula, “A
survey and evaluation of android-based malware evasion techniques and
detection frameworks,” Information, vol. 14, no. 7, p. 374, 2023.

A. Ruggia, D. Nisi, S. Dambra, A. Merlo, D. Balzarotti, and S. Aonzo,
“Unmasking the veiled: A comprehensive analysis of android evasive
malware,” in Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security, 2024, pp. 383-398.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, no. 1, 2014, pp. 23-26.

Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin, “Malscan: Fast
market-wide mobile malware scanning by social-network centrality anal-
ysis,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1EEE, 2019, pp. 139-150.

N. Daoudi, J. Samhi, A. K. Kabore, K. Allix, T. F. Bissyandé, and J. Klein,
“Dexray: a simple, yet effective deep learning approach to android malware
detection based on image representation of bytecode,” in Deployable
Machine Learning for Security Defense: Second International Workshop,
MLHat 2021, Virtual Event, August 15, 2021, Proceedings 2. Springer,
2021, pp. 81-106.

T. Sun, N. Daoudi, K. Allix, and T. F. Bissyandé, “Android malware
detection: looking beyond dalvik bytecode,” in 2021 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering Workshops
(ASEW). IEEE, 2021, pp. 34-39.

T. Sun, N. Daoudi, K. Kim, K. Allix, T. F. Bissyandé, and J. Klein,
“Detectbert: Towards full app-level representation learning to detect
android malware,” in Proceedings of the 18th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2024,
pp. 420-426.

T. Sun, N. Daoudi, K. Allix, J. Samhi, K. Kim, X. Zhou, A. K. Kabore,
D. Kim, D. Lo, T. F. Bissyand¢ et al., “Android malware detection based
on novel representations of apps,” in Malware: Handbook of Prevention
and Detection. Springer, 2024, pp. 197-212.

F. Alswaina and K. Elleithy, “Android malware family classification and
analysis: Current status and future directions,” Electronics, vol. 9, no. 6,
p. 942, 2020.

C. Ding, N. Luktarhan, B. Lu, and W. Zhang, “A hybrid analysis-based
approach to android malware family classification,” Entropy, vol. 23, no. 8,
p. 1009, 2021.

H.-I. Kim, M. Kang, S.-J. Cho, and S.-I. Choi, “Efficient deep learning
network with multi-streams for android malware family classification,”
IEEE Access, vol. 10, pp. 5518-5532, 2021.

S. Freitas, R. Duggal, and D. H. Chau, “Malnet: A large-scale image
database of malicious software,” in Proceedings of the 31st ACM
International Conference on Information & Knowledge Management,
2022, pp. 3948-3952.

T. Sun, N. Daoudi, W. Pian, K. Kim, K. Allix, T. F. Bissyandé, and
J. Klein, “Temporal-incremental learning for android malware detection,”
ACM Transactions on Software Engineering and Methodology, vol. 34,
no. 4, pp. 1-30, 2025.

A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “A multi-view
context-aware approach to android malware detection and malicious code
localization,” Empirical Software Engineering, vol. 23, pp. 1222-1274,
2018.

T. Sun, K. Allix, K. Kim, X. Zhou, D. Kim, D. Lo, T. F. Bissyandé,
and J. Klein, “Dexbert: Effective, task-agnostic and fine-grained repre-
sentation learning of android bytecode,” IEEE Transactions on Software
Engineering, vol. 49, no. 10, pp. 4691-4706, 2023.

X. Qian, X. Zheng, Y. He, S. Yang, and L. Cavallaro, “Lamd: Context-
driven android malware detection and classification with 1lms,” arXiv
preprint arXiv:2502.13055, 2025.

W. Zhao, J. Wu, and Z. Meng, “Apppoet: Large language model based
android malware detection via multi-view prompt engineering,” Expert
Systems with Applications, vol. 262, p. 125546, 2025.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktischel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
neural information processing systems, vol. 33, pp. 9459-9474, 2020.

[20]

[21]

(22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

J. Chen, H. Lin, X. Han, and L. Sun, “Benchmarking large language
models in retrieval-augmented generation,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, no. 16, 2024, pp. 17 754—
17762.

L. Wang, H. Wang, R. He, R. Tao, G. Meng, X. Luo, and X. Liu, “Malradar:
Demystifying android malware in the new era,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 6, no. 2, pp.
1-27,2022.

E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” arXiv preprint arXiv:1612.04433,
2016.

J. Liu, J. Zeng, F. Pierazzi, L. Cavallaro, and Z. Liang, “Unraveling the
key of machine learning solutions for android malware detection,” arXiv
preprint arXiv:2402.02953, 2024.

M. Alecci, J. Samhi, L. Li, T. F. Bissyande, and J. Klein, “ Improving
Logic Bomb Identification in Android Apps via Context-Aware Anomaly
Detection ,” IEEE Transactions on Dependable and Secure Computing,
vol. 21, no. 05, pp. 47354753, Sep. 2024. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TDSC.2024.3358979
“Dalvik executable format,” https://source.android.com/docs/core/
runtime/dex-format, accessed: June 2025.

“Apktool,” https://apktool.org/, accessed: June 2025.

M. Alecci, N. Sannier, M. Ceci, S. Abualhaija, J. Samhi, D. Bianculli, T. F.
d. A. BISSYANDE, and J. Klein, “Toward llm-driven gdpr compliance
checking for android apps,” in 33rd ACM International Conference on
the Foundations of Software Engineering (FSE Companion’25), 2025.
Chroma, “Chroma: The ai-native open-source embedding database,” https:
/Iwww.trychroma.com, 2023, accessed: July 2025.

OpenAl, “Gpt-4.1 api,” https://openai.com/index/gpt-4-1/, 2025.

https://www.bankmycell.com/blog/how-many-android-users-are-there
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://doi.ieeecomputersociety.org/10.1109/TDSC.2024.3358979
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://apktool.org/
https://www.trychroma.com
https://www.trychroma.com
https://openai.com/index/gpt-4-1/

	Introduction
	Background
	Approach
	Experiments
	Apps Under Analysis
	LocApp
	RuMMs App

	Results
	LocApp
	RuMMs App

	Discussion
	Conclusion
	References

