Sensitive and Personal Data: What Exactly Are You
Talking About?

Maria Kober*, Jordan Samhif, Steven Arzt!, Tegawendé F. Bissyandé’ and Jacques Klein'
* Email: mariakober.research@gmx.com
SnT, University of Luxembourg, Luxembourg - Email: firstname.lastname @uni.lu
YFraunhofer Insititute for Secure Information Technology, Darmstadt, Germany - Email: steven.arzt@sit.fraunhofer.de

Abstract—Mobile devices are pervasively used for a variety
of tasks, including the processing of sensitive data in mobile
apps. While in most cases access to this data is legitimate,
malware often targets sensitive data and even benign apps collect
more data than necessary for their task. Therefore, researchers
have proposed several frameworks to detect and track the
use of sensitive data in apps, so as to disclose and prevent
unauthorized access and data leakage. Unfortunately, a review of
the literature reveals a lack of consensus on what sensitive data
is in the context of technical frameworks like Android. Authors
either provide an intuitive definition or an ad-hoc definition,
derive their definition from the Android permission model, or
rely on previous research papers which do or do not give a
definition of sensitive data. In this paper, we provide an overview
of existing definitions of sensitive data in literature and legal
frameworks. We further provide a sound definition of sensitive
data derived from the definition of personal data of several legal
frameworks. To help the scientific community further advance in
this field, we publicly provide a list of sensitive sources from the
Android framework, thus starting a community project leading
to a complete list of sensitive API methods across different
frameworks and programming languages.

I. INTRODUCTION

The Android mobile operating system dominates the current
mobile market [1]. Millions of Android applications (apps)
are available in both official markets like Google Play and
alternative markets like AppChina. These apps can gain access
to various types of data such as user personal data (name,
phone number, address, email address, etc.), sensor readings
(accelerometer, gyroscope, light, gravity, temperature, etc.),
connection and device settings (cellular network, Wi-Fi, serial
number, NFC data, etc.), and many more.

Parts of the data accessible on a phone, e.g., location
information or the list of phone calls, are highly sensitive for
the security and privacy of the users. The Android permission
system [2] is not a full remedy for unauthorized data access as
many apps ask for more permissions than necessary for their
use case [3]. Users often fail to understand the permission
requests of apps and grant permissions overly broadly [4].
Furthermore, malware apps try to gain access to sensitive data,
e.g., from eavesdropping on private conversations [5].

Hence, techniques and frameworks have been proposed that
try to detect and sometimes vet Android apps for leaks and
misuse of sensitive data [6]-[11]. Regardless of the concrete
approach, all of these works require a definition of which data
needs protection and which properties should be checked.

Most current works base their definition of sensitive data on
either @ implicit intuition, @ a custom and ad-hoc definition,
@ a predefined list of methods that are considered to return
sensitive data, or @ the Android permission system.

The first two approaches, intuition and ad-hoc definitions,
render it impossible to compare results between papers.
Further, such definitions are imprecise, leaving different re-
searchers with different judgments on which data to include
as sensitive. Additionally, example-guided approaches provide
no evidence, let alone proof of completeness. For the third
approach, several studies [12]-[14] have shown that these
predefined lists are both incomplete and over-approximated.

Finally, relying on the Android permission model is
not an alternative. Not all API methods protected by
a permission return sensitive data. For example, the
setNetworkSelectionModeManual method of the
TelephonyManager class requires the MODIFY_PHONE-
_STATE permission but does not return sensitive data. Instead,
it returns a Boolean value that specifies whether the requested
change of settings was successful or not. Conversely, some
API methods not protected by permissions can be used to re-
trieve sensitive data. The get Text method of the EditText
class, for example, can be used to retrieve data from a text
input field in the user interface. Depending on the context,
such data might be sensitive, e.g., a password, a social security
number, or banking information. Such accesses, since they
happen inside one app, are not protected by a permission.
Still, a tool that detects leaks of sensitive data should track the
data read from these fields. Further, the Android permission
model is platform-specific. While iOS offers similar sensitive
data, it relies on entirely different protection mechanisms.
Defining sensitive data using references to platform-specific
concepts may lead to inconsistencies, e.g., when comparing
how privacy-friendly apps are for different platforms.

In total, whether intuition-based, ad-hoc, based on pre-
defined lists, or derived from platform-specific permissions,
existing approaches do not provide a clear, concise and
thorough definition on which data shall be considered sen-
sitive. Consequently, they cannot offer code-level definitions
of which data to track or check against privacy rule sets.

This shortcoming is especially severe, because preventing
privacy leaks is a key legal requirement for software in
many jurisdictions. Legal frameworks such as the European
GDPR [15] threaten app developers and cloud operators with

significant fines in case of data loss due to neglect. At the same
time, high-level legal frameworks do not easily map to code-
level elements such as API calls that are used for retrieving
data, making it hard for developers and security analysts to
ensure compliance.

We identify the need for a clear, well-accepted, and uni-
versal definition of what sensitive data is in the context of
technical frameworks like the Android operating system. With
such a definition, researchers can compare their approaches
centered around sensitive data. The definition can also help
penetration testers, software developers, and developers of
code scanners to better identify improper handling of sensitive
data and, thus, to comply with privacy regulations.

While we focus on privacy and personal data, we acknowl-
edge that other data may also be sensitive. For example,
companies have commercial secrets such as the blueprints
for their products or their financial details. However, such
non-privacy-related data is highly domain-specific and usually
not accessible via specific, purpose-built APIs provided by
platforms such as Android. Further, it is usually not regulated
using generic legal frameworks such as the GDPR. We there-
fore exclude such data and focus on privacy-sensitive data.

This paper makes the following original contributions:

o We provide a multi-layered definition of sensitive data.

o We introduce a definition language to tag methods of

programming APIs, e.g., Java methods, as sensitive data.

o We provide a list of manually assembled Android API

methods that return sensitive data based on our definition.
This list is meant to evolve. We see this work as start of a
community project aiming to build a public and complete
list of sensitive APIs. The list is available at:
https://github.com/JordanSamhi/SensitiveData

This paper is structured as follows. Section II introduces ex-
isting legal and technical definitions of personal and sensitive
data. Section III proposes a sound, multi-layered definition
of sensitive data. Section IV provides a definition language
for tagging API methods according to our definition. In
section V, we apply both our definition and definition language
to methods of the Android API. In section VI, we introduce
the community project. Section VII concludes this paper.

II. EXISTING DEFINITIONS AND PROBLEMS

Android apps can access and manipulate several types of
data from many different sources, given that the required
permissions have been granted. Personal data can be used
to identify a person or disclose information about a person.
Another set of data can be considered as sensitive; in the
following, sensitive data is always related to a person (cf.
Section II-A). In this section, we show that: @ existing
definitions in legal framework cannot be used as is to define
what sensitive data is from a technical point of view; and @
existing works do not agree on how to define sensitive data.

A. Legal Frameworks

In this section, we describe legal frameworks that define
what sensitive and personal data is. These legal definitions

shall serve as the ground truth for lists of sensitive APIs on a
technical level.

The General Data Protection Regulation (GDPR) [15] is
a European Union legal framework on data and privacy
protection that became enforceable in 2018. Article 4 of the
GDPR gives the following definition of personal data:

‘personal data’ means any information relating to an
identified or identifiable natural person (‘data subject’);
an identifiable natural person is one who can be identified,
directly or indirectly, in particular by reference to an iden-
tifier such as a name, an identification number, location
data, an online identifier or to one or more factors specific
to the physical, physiological, genetic, mental, economic,
cultural or social identity of that natural person

Sensitive data is seen as “special categor[y] of personal
data” [15, p. 2] that is subject to additional limitations and
that requires additional precautions. The European Commis-
sion provides a condensed overview of which data can be
considered as sensitive in the framework of the GDPR':

personal data revealing racial or ethnic origin, political
opinions, religious or philosophical beliefs; trade-union
membership, genetic data, biometric data processed solely
to identify a human being; health-related data; data
concerning a person’s sex life or sexual orientation.

Other juridical areas provide similar legal frameworks for
restricting the access to and use of personal data. Their
definitions of sensitive and personal data are largely similar
to the GDPR, e.g., in the Colorado Privacy Act (CPA)? and
the Virginia Consumer Data Protection Act (CDPA)?.

Some regulations provide additional requirements beyond
the provisions of the GDPR. The South African Protection
of Personal Information Act (POPI Act)* explicitly includes
”views or opinions of another individual about the person” as
personal data. The California Consumer Privacy Act (CCPA)’
explicitly protects information that can identify a household
or a device, even if such data is not immediately associated
with a single person. The Brazilian General Data Protection
Law (LGPD)® explicitly considers behavioral profiling infor-
mation as personal, if it is connected to an identified person.
The Japanese Act on the Protection of Personal Information
(APPI)” considers information as personal when it can be
collated with other information to identify a person.

Data Protection in Turkey (KVKK)® relies on an implicit
definition of personal data. The legal text in itself does not
provide guiding examples of the data to which it refers.

In total, we find that many provisions and definitions are
similar. Yet, there are also key differences as to which data
is personal or sensitive and which is not. When translating

Ihttps://ec.europa.eu/info/law/law-topic/data-protection/reform/
rules-business-and-organisations/legal- grounds-processing-data/
sensitive-data/what-personal-data-considered- sensitive_en

Zhttps://leg.colorado.gov/bills/sb21-190

3https://lis.virginia.gov/cgi-bin/legp604.exe?211+sum+SB 1392

“https://popia.co.za/

Shttps://oag.ca.gov/privacy/ccpa

Shttps://iapp.org/media/pdf/resource_center/Brazilian_General_Data_
Protection_Law.pdf

"https://www.ppc.go.jp/files/pdf/ APPI_english.pdf

8https://www.kvkk.gov.tr/Icerik/5389/Data- Protection-in- Turkey

legal definitions to the code level, i.e., concrete APIs, analysts
must be able to distinguish them based on the target audience
of the application. Lists of sensitive methods must therefore
be tagged with the legal framework under which the data
returned by the respective API is considered sensitive. Ad-
ditionally, when data is sensitive or personal and when it can
be considered sufficiently anonymized is still actively being
debated [16]. Therefore, lists of sensitive API methods need
to be kept up-to-date, which is possible, for example, in an
continuous community effort.

Further, we stress that the semantic gap between legal
frameworks and technical frameworks on API level (e.g., the
Android ecosystem) has not been solved yet. While legal def-
initions provide guidelines for human data protection officers,
they cannot directly be mapped to API calls and data fields
without ambiguity. While some pieces of data can directly
be used to identify a person alone (i.e., name), other data
@ needs to be combined to identify someone (e.g., postal
code) and, thus, is not sensitive alone; @ can be used to
identify a person but only in a particular context (e.g., a
picture can be sensitive or not, depending on the context); @
depends on concrete values (e.g., clipboard data); or @ gives
access to other sensitive information (e.g., passwords as part
of authentication).

B. Existing Definitions

In Section I, we introduced four basic approaches: intuition,
custom definition, permission-based, and pre-defined lists. In
the following, we explain these approaches in more detail.

a) Permission-based: Several approaches consider data
that is returned by a method to be sensitive if the method
is protected by an Android permission [3], [11], [17]-[20].
In most cases, they assume that all data obtained from such
methods is sensitive, and that all sensitive data can only be
obtained with a permission. In section I, we have shown that
this is not the case in practice.

b) Pre-defined list of methods: Another category of
approaches re-uses lists of methods that return sensitive
data from earlier works [21]-[25]. Some of these lists are
permission-based [3], [26], [27]. Others, such as SuSi [28],
were generated using Machine Learning. Other approaches
rely on DidFail’s [29] list which is example-based and lacks
a proper definition of sensitive data.

Such lists are mostly a byproduct of other works (e.g., a
data flow tracker). Therefore, they can neither be expected
to be complete, nor kept up-to-date. Further, not all methods
in these lists necessarily return sensitive data. The original
(implicit) definition of a sensitive method may not align with
the use case for which the list is later applied, e.g., when
new legal frameworks apply. Further, these lists contain false
positives [12]-[14], [30].

c) Intuition: Some approaches rely on intuition and ex-
amples for identifying sensitive data [31], [32]. Other works do
not define what sensitive data is [33], [34]. These approaches
implicitly accept an incomplete list. UiRef [35], e.g., provides
the examples passwords, credit card numbers, social security

numbers, passport numbers, and healthcare information. Be-
sides being incomplete on a conceptual level, the mapping
between a concept like “healthcare information” and concrete
APIs is also ad-hoc, incomplete, and easily outdated.

d) Ad-hoc definitions: Another category of approaches
uses ad-hoc definitions of what sensitive data is. Examples of
these approaches are: @ Difuzer [36], a hybrid approach for
detecting suspicious hidden sensitive operations in Android
apps. For their data flow analysis, the authors systematically
collected a list of source methods. However, they restricted
themselves to system inputs and environment variables in the
Android framework that they consider to return sensitive data;
@ TaintDroid [9] is a dynamic analysis approach to track
information flow in Android apps to reveal potential sensitive
data leaks. The authors define sensitive data as a piece of data
returned by a taint source. Thereafter, they define a taint source
as a privacy-sensitive source. The authors give the list of
sources they considered in their study: LocationManager data,
SensorManager data, data buffers and files to track microphone
and camera information, database files, the phone number,
ICC-ID, IMEI number, and the native socket library.

In total, we conclude that several approaches do not provide
a definition, rely on a (present or not present) definition in
previous work, or provide a definition that is not comparable
with other approaches in literature (e.g., based on intuition or
an ad-hoc definition), thus being without guarantees on the
underlying list for either completeness or comparability.

III. A DEFINITION OF SENSITIVE DATA

The definition of personal data in legal frameworks is usu-
ally quite broad; sensitive data can oftentimes be summarized
as personal data requiring special protection. For any definition
targeting technical frameworks, this means that almost every
data obtained through an API call can be personal data and
possibly sensitive data — an image, a file, a phone number, a
location. Yet we note that not all data (e.g., images) are always
sensitive or personal data, e.g., the sensitiveness depends on
the context of the data. Therefore, we propose a multi-layered
definition of sensitive data, derived from the definitions of
personal data:

(a) Always-sensitive data: Data that can categorically iden-
tify a person without any other information and/or is al-
ways directly related to a person. For example, an email
address, username, name, or unique device identifier.

(c) Combination-sensitive data: Data that is only sensitive
when combined with other data. For example, a location
is neither sensitive nor personal data, but becomes
sensitive once combined with a persons’ name and the
date the person visited the location.

(t) Context-sensitive data: Sensitive depending on the con-
tent and context. A photo, for example, is likely sensitive
in a healthcare app (photo of, e.g., some wounded skin),
but not in a review app for hotels, where the photo is
intended for publication in any case.

(g) General-purpose data: Sensitive depending on the con-
crete value, e.g., clipboard data. Regardless of the cur-

rent app, the system-wide shared clipboard may contain
arbitrary data, including a password or phone number.

(p) Access data: Data non-sensitive by itself, but — possibly
in combination with other data — gives access to sensi-
tive data. An example is a password, which is usually
combined with a username or email address.

In general, we assume a device to be linked with a person.
This is in accordance with, e.g., the GDPR which states that
”[n]atural persons may be associated with online identifiers
provided by their devices, applications, [...] or other identifiers
[...]” [15, p. 6]. We also assume that users use an app as
intended. It is not the developers’ responsibility to protect the
contents of, e.g., a chat app the same way as medical records,
although users may abuse the app to send files to doctors.

IV. DEFINITION LANGUAGE

In this section, we propose a formal definition language
for tagging sensitive API methods, i.e., methods that may
provide access to sensitive data, and corresponding parameters.
This language is based on our definition of sensitive data in
section III. The language itself is tool- and platform-agnostic.
Concrete method lists, however, are specific to a particular
framework, such as Android or iOS.

A sensitive method is a tuple ¥ := (o, &, (, p, T), where o
is the signature of the method in Soot’s notation [37], which is
based on the Jimple [38] method signature. While originally
designed for Java, this notation — consisting of class name,
method name, and parameter list — can also be applied to
other object-oriented languages such as ObjectiveC for iOS.

Sensitive data can be obtained in two ways. Firstly,
the developer can call a getter-style API method, e.g.,
getLastKnownLocation for obtaining the last GPS
position. Secondly, many platforms provide callbacks
that notify apps when data becomes available, e.g.
onLocationChanged for when the GPS position changes.
In our model, « is the parameter index in a callback, or —1
to denote the return value of a getter-style call.

¢ € a,c,t,g,p specifies whether the data provided by
a method is always sensitive (a), combination-sensitive (c),
context-sensitive (t), general-purpose (g), or access (p) data.

p € P(R) denotes the set of regulations to which this
method applies, e.g., “GDPR-sensitive” for Art. 9 data from
the European GDPR. This annotation is necessary because the
definition from section III captures a superset over different
legal frameworks. Still, a given developer may only be inter-
ested in API methods relevant for a particular legislation based
on their respective jurisdiction.

7 € P(T) denotes a set of tags for categories (e.g., “photo”,
“email”), indicating which type of sensitive data the method
provides. Analysts and developers can then choose whether,
in their context, photos are considered sensitive. We envision
that data protection officers may provide a list of such relevant
categories. This would allow the data protection officer to
reason about the app on a domain-specific, asset-driven level,
while still allowing for tool support based on our method list.

We consider the universe of tags P(T) as semi-extensible, i.e.,
subject to a curated process to ensure a consistent taxonomy.

V. API EXAMPLES

As an example, we discuss the get Imsi () method of the
TelephonyManager class. The method returns data that is
always sensitive, because the IMSI can uniquely identify the
user. In this case ¢ = android.telephony.TelephonyManager:
java.lang.String getlmsi() which is the Jimple [38] method
signature; Kk = —1 since the returned value is considered as
sensitive for this method call; (= a since the data is consid-
ered as being always sensitive; p = {GDPR, CCPA, ...}; and
the tag-category 7 = {unique_device_identifier}.

As another example, we discuss the getBitmap ()
method of the MediaStore.Images.Media class in
android.provider. This method returns a Bitmap
object representing, e.g., a picture. The picture alone
is not considered sensitive in itself since it is context-
dependent. Indeed, if the image comes from a healthcare
app, it is highly likely that it represents sensitive data
(e.g., an MRI picture). However, if the app is about
displaying random cat pictures, it is highly likely that
the picture does not represent sensitive data. In this
case o = android.provider.MediaStore$Images$Media:
android.graphics.Bitmap getBitmap(android.content.-
ContentResolver, android.net.Uri); = —1 since the
returned value is considered as sensitive for this method
call; ¢ = t since the data is considered as being sensitive
depending on the context; p = {GDPR, ...}; 7 = {photo}.

VI. PERSPECTIVES AND COMMUNITY PROJECT

With this paper, we start a community project to manually
assemble lists of sensitive API methods. While we provide
an initial list, this list is far from complete. The Android
framework alone has over 40 000 public API methods, which
is an arduous number of methods to go through manually
as single person or single research group. Therefore, we set
up a repository on GitHub with a collection of Android API
methods categorized according to the definition of sensitive
data and the definition language introduced in this paper. The
lists that we provide serve as a starting point. We invite other
researchers and practitioners to join our effort and complete
this list — for Android, for other Java frameworks, as well as
samples of sensitive API methods from other platforms.

VII. CONCLUSION

In this paper, we have presented a definition of sensitive data
along with a definition language for tagging API methods that
provide such data to client code, e.g., Android applications.
We provide an initial categorized and annotated tool-agnostic
list of methods to the research community and call for a
collaborative effort to extend and maintain this list.

[1

—

2

—

[3]

[4

=

[5

—

[6

=

[7]

[8]

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

IDC. (2022) Smartphone market share, https://www.idc.com/promo/
smartphone-market-share/os. Accessed May 2022.

Google. (2022) Permissions on android, https://developer.android.com/
guide/topics/permissions/overview. Accessed May 2022.

K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS *12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
217-228.

A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security,
ser. SOUPS ’12. New York, NY, USA: Association for Computing
Machinery, 2012.

Erlc_C. (2022) Complete dissection of an apk
with a suspicious c2 Server, https://1ab52.i0/blog/
complete-dissection-of-an-apk-with-a-suspicious-c2-server/. Accessed
May 2022.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” SIGPLAN Not., vol. 49, no. 6, p. 259-269, Jun. 2014.

L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, 2015,
pp. 280-291.

J. Samhi, A. Bartel, T. F. Bissyandé, and J. Klein, “Raicc: Revealing
atypical inter-component communication in android apps,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1398-1409.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” ACM Trans.
Comput. Syst., vol. 32, no. 2, jun 2014.

M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe.”
in NDSS, vol. 15, no. 201, 2015, p. 110.

F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” ACM Trans. Priv. Secur., vol. 21, no. 3, apr 2018.

W. Wang, J. Wei, S. Zhang, and X. Luo, “Lscdroid: Malware detection
based on local sensitive api invocation sequences,” IEEE Transactions
on Reliability, vol. 69, no. 1, pp. 174-187, 2020.

M. Junaid, D. Liu, and D. Kung, “Dexteroid: Detecting malicious
behaviors in android apps using reverse-engineered life cycle models,”
Computers & Security, vol. 59, pp. 92-117, 2016.

L. Luo, E. Bodden, and J. Spith, “A qualitative analysis of android taint-
analysis results,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 102-114.

European Parliament and Council of the European Union, “Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the
processing of personal data and the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation),”
Official Journal of the European Union, vol. 119, pp. 1-88, 2016.

S. Stummer, “Issues of verifying anonymity: An overview,” in IN-
FORMATIK 2022, D. Demmler, D. Krupka, and H. Federrath, Eds.
Gesellschaft fiir Informatik, Bonn, 2022, pp. 179-194.

C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Au-
tomatically detecting potential privacy leaks in android applications on
a large scale,” in Trust and Trustworthy Computing, S. Katzenbeisser,
E. Weippl, L. J. Camp, M. Volkamer, M. Reiter, and X. Zhang, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 291-307.

X. Cui, D. Yu, P. Chan, L. C. K. Hui, S. M. Yiu, and S. Qing,
“Cochecker: Detecting capability and sensitive data leaks from compo-
nent chains in android,” in Information Security and Privacy, W. Susilo
and Y. Mu, Eds. Cham: Springer International Publishing, 2014, pp.
446-453.

S.Y. Y. W Y. Yao and H. W. Y. E Y. X. Xiao, “Describectx: Context-
aware description synthesis for sensitive behaviors in mobile apps,” in
International Conference on Software Engineering (ICSE’22), 2022.

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 1025-1035.

L. Luo, F. Pauck, G. Piskachev, M. Benz, 1. Pashchenko, M. Mory,
E. Bodden, B. Hermann, and F. Massacci, “Taintbench: Automatic
real-world malware benchmarking of android taint analyses,” Empirical
Software Engineering, vol. 27, no. 1, p. 16, Oct 2021.

D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen, “Deepflow: Deep learning-
based malware detection by mining android application for abnormal
usage of sensitive data,” in 2017 IEEE Symposium on Computers and
Communications (ISCC), 2017, pp. 438-443.

S. Lou, S. Cheng, J. Huang, and F. Jiang, “Tfdroid: Android malware
detection by topics and sensitive data flows using machine learning
techniques,” in 2019 IEEE 2nd International Conference on Information
and Computer Technologies (ICICT), 2019, pp. 30-36.

Z. Meng, Y. Xiong, W. Huang, L. Qin, X. Jin, and H. Yan, “Appscalpel:
Combining static analysis and outlier detection to identify and prune
undesirable usage of sensitive data in android applications,” Neurocom-
puting, vol. 341, pp. 10-25, 2019.

G. Russello, B. Crispo, E. Fernandes, and Y. Zhauniarovich, “Yaase: Yet
another android security extension,” in 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third
International Conference on Social Computing, 2011, pp. 1033—-1040.
M. Backes, S. Bugiel, E. Derr, S. Weisgerber, P. McDaniel, and
D. Octeau, “Poster: On demystifying the android application framework:
Re-visiting android permission specification analysis.”

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS "11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 627-638.
S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for the fully
automated classification and categorization of android sources and
sinks,” University of Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.
L. H. Tuan, N. T. Cam, and V.-H. Pham, “Enhancing the accuracy of
static analysis for detecting sensitive data leakage in android by using
dynamic analysis,” Cluster Computing, vol. 22, no. 1, pp. 1079-1085,
2019.

V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, 2015, pp. 426-436.

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS "13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 1043-1054.
W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis,
ser. SOAP ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 1-6.

B. Soewito and A. Suwandaru, “Android sensitive data leakage preven-
tion with rooting detection using java function hooking,” Journal of King
Saud University - Computer and Information Sciences, vol. 34, no. 5,
pp. 1950-1957, 2022.

X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark hazard:
Learning-based, large-scale discovery of hidden sensitive operations in
android apps.” in NDSS, 2017.

B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie, “Uiref:
Analysis of sensitive user inputs in android applications,” in Proceedings
of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, ser. WiSec 17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 23-34.

J. Samhi, L. Li, T. F. Bissyande, and J. Klein, “Difuzer: Uncover-
ing suspicious hidden sensitive operations in android apps,” in 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE). Association for Computing Machinery, may 2022.

P. Lam, E. Bodden, O. Lhotédk, and L. Hendren, “The Soot framework
for Java program analysis: a retrospective,” in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), vol. 15, 2011.

R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode for
analyses and transformations,” 1998.

