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1 INTRODUCTION

Android is the most adopted mobile operating systems in terms of users, applications and developers [9]. However, its
popularity means that legitimate developers must co-exist with malware writers. Reports on many different kinds of
attacks are presented in the technology and lay media. For example, security researchers have reported a malicious
“clicker trojan”1 which has been bundled into 34 different Google Play apps that have already been installed more than
100 million times2. On a larger scale, antivirus engines have been flagging a large number of apps as potential threats.
For example, as of October 2020, the popular AndroZoo dataset [8] has recorded more than 226,000 Android GooglePlay
apps than have been flagged as adware/malware by at least 5 Antivirus products, and this number is still growing.
Those adware/malware often not work along but collaborate with many third parties over the internet. Some of the
representative malicious behaviors include leading users to malicious websites through devious advertisements [22, 23,
46, 71], distributing malicious apps in the mobile network through drive-by downloads [19], leaking users’ sensitive
data to web servers through HTTP connections [28, 37, 47, 65], etc.

To protect Android users against the rapid spread of malware, the research and practice communities have im-
plemented a variety of measures and proposed several approaches to detect malware [11, 43, 52, 66, 72, 74]. These
include static code analysis-based approaches [39, 41], dynamic testing based approaches [34], and learning-based
approaches [49]. Unfortunately the emergence of many different malware detection techniques has also stimulated
malware attackers into being more innovative to increasingly better hide malicious behaviour, in order to bypass
static code analysis (e.g., via obfuscation) and even dynamic detection (e.g., sensing of sandbox execution). In practice,
sophisticated code obfuscation techniques [53] are being leveraged by attackers to hide their malicious program behavior,
leading to false negatives in most static analyses thus resulting in imprecise and unsound results. Camouflage techniques
have been frequently leveraged by attackers to evade dynamic testing approaches [25, 62]. Attackers often introduce a
so-called logic bomb or time bomb to set off malicious functions only after certain conditions are met. For instance, after
knowing that Google applies a dynamic analysis tool called bouncer to scan every app submitted to Google Play for
five minutes, as revealed by Oberheide et al. [55], a bunch of malicious apps has been created and been demonstrated
to be capable of penetrating Google’s bouncer vetting system by simply waiting five minutes before triggering their
malicious behavior.

To cope with such hidden malicious behaviors, researchers have devised new detection approaches. For example,
Fratantonio et al. [27] have proposed an approach called TriggerScope to detect hidden behaviors triggered by predefined
circumstances such as events related to location, time, and SMS. However, TriggerScope is not capable of detecting such
malicious activities hidden behind other trigger types, such as the existence of other services (i.e., other than location,
time and SMS). In line with this research, Pan et al. [57] have proposed a machine learning-based approach aiming
to discover unknown trigger types. Their approach, however, needs to manually label a dataset for training, which is
known to be resource-intensive and error-prone.

Static analyzers suffer less than dynamic approaches from evasion techniques such as logic bomb or time bomb.
In particular, regarding sensitive flow detection (also called privacy leak detection), numerous static analysis tools
have been proposed such as FlowDroid [12] (and its extension IccTA [38]), Amandroid [70], or DroidSafe [30].
Although these tools are able to track sensitive flows (which are often hidden) by bringing key new contributions to the

1Such as the Android.Click.312.origin trojan and its modified variant Android.Click.313.origin trojan. This aims to generate fraudulent click-through and
subscription revenues.
2https://www.forbes.com/sites/zakdoffman/2019/08/13/android-warning-100m-users-have-installed-dangerous-new-malware-from-google-
play/#1956f51c22a9
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research community, they still face some well-known limitations [60]: their inherent over-approximations inevitably
lead to false alarms, which, for some analyzers, occur at a high rate, making them impractical. Consequently, when
building on static analysis, manual investigation is often required. Unfortunately, such efforts cannot scale. Dynamic
validation then appears as an alternative. Unfortunately, runtime execution often misses hidden sensitive flows due to
the implementation of evasion techniques by attackers. While some effort (e.g., [27, 57]) has been put to characterize

Hidden Sensitive Operations (HSOs) in Android apps, our community has not yet proposed dedicated approaches to
detect and explain such operations, allowing attackers to achieve malicious behaviors while bypassing certain security
vetting mechanisms.

We fill this research gap in this work by proposing a new prototype tool, HiSenDroid, which deploys an automated
static app analyzer tailored for detecting hidden sensitive operations. HiSenDroid performs a sequence of static analyses,
including call graph analysis, forward data-flow analysis, inter-procedural backward data-flow analysis, etc. For exposed
HSOs, HiSenDroid further goes one step deeper to record detailed information for explaining why these HSOs should
be flagged as such.

To summarize, key contributions of our work include:

• We propose using a static analysis approach to discover hidden sensitive operations that are not exposed to the
state-of-the-art static and dynamic analysis tools in Android apps. To this end, we leverage control flow and data
flow analyses to identify the unique code level characteristics of hidden sensitive operations.

• We designed and implemented a prototype tool HiSenDroid for analyzing hidden sensitive operations. We release
HiSenDroid as an open source project [5] for supporting security analysts in their analysis needs and fostering
further researches in this direction.

• We evaluated HiSenDroid on a large-scale dataset that contains 10,000 benign and 10,000 malware samples,
and discovered emerging anti-analysis techniques employed by malware samples, such as fulfilling certain
restrictions related to time, location, SMS message, system properties, package manager, and other logics.

• With the help of FlowDroid [12], a static taint analyzer, we further experimentally show that HSOs have been
recurrently leveraged by attackers to leak sensitive user information.

The rest of the paper is organized as follows: Section 2 defines HSO and presents the motivation of our research,
i.e., why there is a strong need to demystify HSO. Section 3 depicts the design and implementation of the proposed
approach. Section 4 and Section 5 respectively describe the characteristics of common and susipious HSOs detected by
our approach from a large-scale dataset. Section 6 presents a practical implication of our approach by characterizing
sensitive data leaks triggered by HSOs. Section 7 discusses the limitations of the tool. Section 8 reviews the related
works, and finally Section 9 concludes this paper.

2 HSO DEFINITION AND MOTIVATION

We conducted an exploratory study to understand the characteristics of Hidden Sensitive Operations (HSO) in Android
apps. We first dumped operations in a set of real-world Android malware. Then, we manually examined those operations
to observe the characteristics of such operations that could be considered as hidden-triggered operations. Based on our
manual summarization, we found that (1) if statement and the notion of branch are key in the definition of HSO; (2) the
if statement contains a specific operation that triggers the hidden sensitive flows, and this trigger condition is related to
Android API.
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Let 𝐵 denote one of the two branches of an if-then-else statement, or the branch of an if statement where the else
branch is considered empty.

Definition 1 [Hidden Sensitive Branch (HSB)]: 𝐵 is an HSB if it fulfills the following rules:

(1) 𝐵 contains sensitive Android APIs, and these APIs are different from those contained in the other branch involved
in the if-then-else statement. The rationale behind this condition is that a hidden branch is supposed to achieve
some sensitive behaviors that are different from those of the "normal" branch (i.e., non-HSB), which per se might
also access sensitive APIs as part of the app’s expected behaviors.

(2) 𝐵 does not involve any of the variables appearing in the condition expression of the if-then-else statement. The
rationale behind this is that the branch is triggered by conditions that are also different from its (sensitive)
behaviors.

Less formally, anHSB could be defined as an "if branch" which accesses sensitive APIs, andwhich is fully "independent"
of the if condition and the other branch of the if statement.

Let 𝐶 denote the 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 of an if statement.
Definition 2 [Hidden Sensitive Operation (HSO)]:AnHSO is an HSB that is triggered by a condition𝐶 containing

values obtained via (or directly impacted by) Android system APIs or system properties (i.e., attributes of system classes).
This may return different values when being executed under different circumstances, so as to triggering hidden sensitive
operations.

Listing 1 exemplifies a simplified code snippet illustrating these definitions in practice. Note that Listing 1 presents
the typical characteristics of an HSO in many real-world apps that we have manually analyzed. At line 7, the app firstly
checks if it is running on one of the popular Android emulators (i.e., genymotion, bluestacks, and bignox). If not, the app
reads the device information and sends it to a hard-coded phone number through an SMS. Otherwise, if an emulator
environment is detected, it will only perform some unharmful string operations (ignored). In this example, three private
data – namely the device’s IMEI, IMSI, and phone number – are retrieved in lines 9-11 and sent to a hard-coded phone
number via SMS (line 15). All of these three leaks are hidden behind the trigger condition ed.checkPackageName()

(line 7). The trigger condition checks the return value of a self-defined method checkPackageName() (line 30), which is
determined by several other if-conditions defined in the invoking method (lines 31,37,39). Finally, the trigger condition
in the HSO is traced back to a system API PackageManager.queryIntentActivities() (line 38) (cf. Definition 2). This
trigger condition examines whether popular Android emulator packages (lines 26-28) are available in the device, i.e.,
checking if the app is running on these emulators. If the running environment is not one of the hard-coded emulators,
the HSO will be performed. Otherwise, benign string operations are executed (lines 17-19) (cf. Definition 1).

3 OUR APPROACH

To better help security analysts understand Hidden Sensitive Operations (HSO) placed in Android apps, we designed and
implemented a prototype tool, named HiSenDroid, to automatically locate such operations in Android apps. HiSenDroid
takes as input an Android app and outputs a set of hidden sensitive operations. Fig. 1 illustrates the working process of
HiSenDroid. It achieves the aforementioned goal through three main modules, namely: (1) Hidden Sensitive Branch
Location; (2) Trigger Condition Inference; (3) Suspicious HSO Detection and Explanation. We now respectively detail
these three modules.

Manuscript submitted to ACM
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1 public class MainActivity extends AppCompatActivity {
2 protected void onCreate(Bundle savedInstanceState) {
3 SmsManager smsManager = SmsManager.getDefault ();
4 ED ed = new ED(this);
5 StringBuilder message = new StringBuilder ();
6
7 if(ed.checkPackageName ()) {
8 TelephonyManager tm = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);
9 String imei = tm.getDeviceId ();
10 String phoneNumber = tm.getLine1Number ();
11 String subscriberId = tm.getSubscriberId ();
12 message.append(imei);
13 message.append(phoneNumber);
14 message.append(subscriberId);
15 smsManager.sendDataMessage("+115800763861", null , (short)1001, message.toString ().getBytes (), null , null);
16 } else {
17 // benign string operations
18 }}
19
20
21 public class ED {
22 public ED(Context pContext) {
23 mContext = pContext;
24 mListPackageName.add("com.google.android ... genymotion");
25 mListPackageName.add("com.bluestacks");
26 mListPackageName.add("com.bignox.app");
27 }
28 public boolean checkPackageName () {
29 if (! isCheckPackage || mListPackageName.isEmpty ()) {
30 return false;
31 }
32 final PackageManager packageManager = mContext.getPackageManager ();
33 for (final String pkgName : mListPackageName) {
34 final Intent tryIntent = packageManager.getLaunchIntentForPackage(pkgName);
35 if (tryIntent != null) {
36 final List <ResolveInfo > resolveInfos = packageManager.queryIntentActivities(tryIntent ,

PackageManager.MATCH_DEFAULT_ONLY);
37 if (! resolveInfos.isEmpty ()) {
38 return true;
39 }
40 }
41 }
42 return false;
43 }

Listing 1. An example of a real-world hidden sensitive data flow.

APK

HS Branch 
Location

Trigger Condition 
Inference

Suspicious HSO 
Detection & Explanation

Android 
app

List of Common 
HSOs

Suspicious 
Hidden Sensitive 

Operation

Fig. 1. The working process of HiSenDroid.

3.1 Hidden Sensitive Branch Location

The first module of HiSenDroid is responsible for locating hidden sensitive branches (HSBs) in Android apps (i.e.,
fulfilling the rules in Definition 1). Towards locating HSBs, this module first statically goes through all the methods
that appeared in the DEX file of the input APK. For each method, this module then constructs an intra-procedural
control-flow graph (CFG) and traverses the graph to locate if-then-else statements. Once an if-then-else statement is
located, it further extracts the sensitive APIs accessed by the two branches (hereinafter referred to as if-branch and
else-branch). Sensitive APIs are such methods that are protected by Android permissions, which are classified following
the latest Android API-permission mappings PSCout [13], Axplorer [14], Arcade [7], and NatiDroid [36]. Any of the
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two branches will be considered a potential HSO if it has indeed accessed sensitive APIs that are different from the
APIs accessed by the other branch.

When extracting sensitive APIs, in order to obtain a soundy result [51] (e.g., including all the sensitive APIs accessed
by a potential HSB), this module traverses not only the methods directly presented in the HSB but also all the methods
that could be reached from the branch. This process is made possible by first constructing a call graph (CG) for the
input APK. Unfortunately, as discussed by many existing works, Android apps do not have a single entry point (e.g.,
main()) that connects other parts of the application code, making static analyses challenging to cover all the app
code. Fortunately, this challenge has been well addressed by the state-of-the-art by artificially creating a so-called
dummy main method, connecting together all the separated code parts, including system-driven lifecycle methods and
event-driven callback methods [12].

Based on our observation and the findings of previous work [57], the connection between trigger conditions and the
operations along its paths is often weak. Indeed, the variables appearing in triggers typically do not propagate data
flow to its following paths. Take Listing 1 as an example, the app checks if it is running inside Android emulators at
line 7, where the trigger condition code itself is not supposed to steal private data and is only meant to determine the
right situation for running hidden code. To leverage this property, we attempt to check whether variables appearing in
the HSB have data dependency with any variable within the condition expression. Thus, for a given potential HSB,
this module goes one step further to check if any of the variables appeared in the HSB’s condition expression has been
leveraged by the HSB code. If so, this HSB will not be considered as a true HSB and thereby will be excluded from
further analyses. This module achieves this by conducting a simple intra-procedural control-flow analysis. In a case of
true HSB, there should not be intersections between the set of variables that appeared in its condition expression and
those within the branch.

3.2 Trigger Condition Inference

After locating HSBs, the second module goes one step deeper to infer hidden sensitive operations (HSOs) so as to fulfill
Definition 2. Given a true HSB, the idea of detecting HSOs is to infer the detailed trigger conditions that lead to the
execution of the HSB.

We began with a preliminary study to understand what kinds of trigger conditions have been used to hide suspicious
APIs, as identified from the literature [1, 2, 4, 17, 18, 21, 31, 54, 57, 59, 68] on trigger conditions. For example, Petsas
et al. [59] investigated anti-analysis techniques that can be employed by Android apps to evade detection, including
pre-initialized static information(e.g., IMEI value), dynamic information that does not change (e.g., Sensors data) and
VM instruction emulation (e.g., hardware variable). In their paper, they demonstrated how dynamic analysis could be
evaded by the aforementioned trigger conditions in an emulated environment. Pan et al. [57] further summarize that
almost all the trigger conditions of HSOs can be characterized by System Properties (e.g., OS or hardware traces of
a mobile device) or Environment Parameters (time, locations, SMS, etc.). To the best of our knowledge, the values
in both types can be obtained through Android system APIs. In other words, an HSO trigger condition is expected
to involve, directly or indirectly, one or more system API calls for interacting with the Android operation system.
Therefore, since it is very important to identify all possible trigger conditions, we propose considering all the condition
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checks to infer HSO’s trigger conditions3 as long as they involve system properties, environment parameters, and any
other values yielded by system APIs.

In this work, we follow the same criteria to infer HSOs (i.e., the trigger conditions involves values obtained through
Android system APIs). Specifically, to infer the trigger conditions, for each of the variables that appeared in the HSB’s
condition expression, there is a need to conduct backward data-flow analyses to locate its definition statement. The code
block between the definition statement and the if-then-else statement is then referred to as a Condition Triggering Block
(CTB). Then, given a potential HSO, we check whether a system API is involved in the definition statement of the HSO’s
CTB. If not, we will regard this HSO as a false result and consequently will not consider it for further analyses.

When inferring the definition statement, inter-procedural analysis needs to be taken into account because the trigger
conditions can be defined in other methods and transferred to the HSB via callee’s returned values or caller’s parameter
values. Indeed, take the code snippet shown in Listing 1 as an example, the trigger condition is actually defined in
method checkPackageName() despite the HSB is seated in the onCreate() method. Fig. 2 illustrates the backward tracking
flow showing how our approach identifies the trigger condition. When there is a method involved in the backward
tracking flow, our data-flow analysis will keep tracking the method’s caller object as it may be relevant to the definition
of the trigger condition. For example, our analysis will keep tracking $r1 when statement $r1.isEmpty() is reached. If
the method is a user-defined function, our data-flow analysis will further jump into the method and keep tracking
its returned variables (all variables will be tracked if there are several return statements). The backward data-flow
analysis will terminate if System APIs are identified, or Android’s entry-point methods (such as UI callback methods or
components’ lifecycle methods) are reached. The analysis will also stop if the condition is linked to a constant value
that is further not originated by if-statements.

3.3 Suspicious HSO Detection

The last module takes the outputs of the previous module to detect hidden sensitive operations, following the rules
presented in Definition 1 and Definition 2 (cf. Section 2). Unfortunately, these rules are not perfect and may introduce
false-positive results that have similar characteristics of HSOs but are actually user intended behaviors. Indeed, for the
same operations, under different circumstances, they could be flagged as conventional usages or suspicious operations
and could lead to benign or user intended malicious behaviors. These false results include common programming
patterns used in legitimate if-then-else statements (hereinafter referred to as conventional usages), which should be
excluded by HiSenDroid . Therefore, we resort to building a list of conventional usages (or whitelist) and based on it, in
the last module of HiSenDroid, we filter out non-malicious HSOs and only keep suspicious HSOs.

Nevertheless, we argue that it is non-trivial to understand the developer’s intention behind the operations. Therefore,
in this last module, in addition to automatically detect suspicious hidden sensitive operations, HiSenDroid goes one
step deeper to also provide adequate details to explain why an suspicious HSO is flagged as such, i.e., what is the trigger
condition, what is the logic of the if condition, and what are the sensitive behaviors triggered if the logic is fulfilled.
This function is provided for helping security analysts understand whether the flagged HSOs should be regarded as
malicious or not.

By leveraging HiSenDroid, in Section 4, we study and collect conventional usages in large sets of Android apps,
whereas in Section 5, we put the emphasize on suspicious HSOs.
3We remind the readers that state-of-the-art studies (e.g., by Moser et al. [53] and Zeng et al. [73]) have further revealed that obfuscation (via reflective
calls or opaque predicates) could be leveraged to complicate the inference of trigger conditions (e.g., changing the way how a system property is obtained
from the system). We do not take obfuscation as a type of trigger condition but will only consider it as a technique that complicates the process of
identifying trigger conditions. We will discuss the impact of obfuscation on our approach at the end of Section 5.
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public boolean checkPackageName() 
{
    $r1 = $r3.queryIntentActivities($r7, 65536);
    
    $z0 = $r1.isEmpty();
    
    if $z0 != 0 goto label2;
    
    return 1; 
}

protected void onCreate(android.os.Bundle) 
{
    $z0 = $r5.checkPackageName(); 
     
    //Trigger condition expression
    if $z0 == 0 goto label1;
    $r7 = $r3.getDeviceId(); //HSB
}

$r5

Fig. 2. The simplified working process of the trigger condition inference module. The code is presented in simplified Jimple, which is
an intermediate representation of Soot [35]. Soot is the underline static analysis framework leveraged by HiSenDroid to achieve the
backward data-flow analysis.

4 CONVENTIONAL USAGE ANALYSIS

The overall goal of this work is to detect hidden sensitive operations so as to unveil the evasive technologies that are
frequently leveraged to hide malicious behaviors. In this section, we evaluate our approach based on a large set of
Android apps towards checking if our approach HiSenDroid is capable of fulfilling this goal. Specifically, in this section,
we conduct an exploratory study of recent hidden sensitive operations aiming to understand the current status quo of
conventional usages and build a comprehensive list of conventional usages (to be used by HiSenDroid to discriminate
suspicious HSOs from conventional usages).

Recall that our approach, in its last working step, takes as input a customizable list of conventional usages to filter
out non-suspicious HSOs, which subsequently helps in saving significant security analysts’ efforts as they now only
need to scrutinize the retained small number of likely suspicious HSOs. Towards identifying such conventional usages,
we apply a semi-automatic process to summarize based on their frequency of occurrence. The conventional usage
whitelist is built based on reasonable assumptions that legitimate HSOs frequently appear in Android apps, including
both malware4 and goodware. We manually inspected the trigger APIs that have appeared more than 50 times in our
dataset and determined if they should be categorized as a conventional usage. By doing so, we defined seven major
categories of conventional usages. Also, the results of our manual analysis are cross-validated by two authors. The two
authors first independently conduct the manual analysis (to discover knowledge with support evidence from various
software artifacts). They then had physical meetings to discuss, merge, and finalize the results.

Experimental Setup. We applied HiSenDroid (with the list of conventional usages set to be empty5) on a dataset
that contains 10,000 malware samples (referred to asmalware set) and 10,000 benign apps (referred to as benign set). The
malware set was collected from VirusShare [6] from 2012 to 2020. To better reflecting recent trends on the deceptive

4Malware is included because often not all of its code is malicious. It might contain a malicious payload but the other code could still remain benign.
5The experimental results should contain both conventional usages and suspicious HSOs.
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Fig. 3. Distribution of the number of HSOs in benign set and malware set.

techniques used in malware samples, we only include the samples whose first seen date was on or after 2016. The
malware samples were submitted to VirusTotal6 for screening, and only the ones that have been labelled by more than
five anti-virus engines (VirusTotal has hosted over 70 anti-virus scanners) were selected.

The benign set was randomly selected from a pool of more than 100,000 apps crawled from Google Play in 2019,
which are further scanned to ensure non of them are tagged by VirusTotal.

Our tool has identified 45,342 HSOs (35,974 in the malware set, and 9,368 in the benign set) triggered by 54,152
conditions. Note that some HSOs may be triggered by more than one condition (e.g., multiple conditions in a CTB that
are connected by AND or OR operators). Towards evaluating the precision of HiSenDroid, i.e., the identified HSOs meet
our previous rule definitions, we manually examine 20 randomly selected APKs from the total 8,107 apps that have
been identified to contain at least one HSO. From these apps, our approach identified 157(with a confidence level of 95%
and a confidence interval of 7.81%) HSOs in total, among which 155 of them are eventually confirmed to be true HSOs,
giving an precision of 98.7%. This result suggests that HiSenDroid is capable of identifying HSOs in Android APIs.

Figure 3 further presents the distribution of the number of HSOs detected in the apps from benign set and malware

set. Expectedly, malware samples involve significantly more HSOs than that of benign apps, as confirmed by the p-value
a Mann-Whitney-Wilcoxon (MWW) test at a significance level7 at 0.001 [26]. This result suggests that HSOs are more
favored by malware than benign apps. Hence, our community should pay more attention to the appearance of HSOs to
help security analysts better dissect malicious apps.

Based on the previous experimental results, we manually analyzed the trigger conditions and the corresponding
hidden operations to identify conventional usages, i.e., HSOs (at least based on our definition) that are actually legitimate
and occur relatively often in Android apps. We first inspected the trigger APIs that have appeared more than 50 times in
our dataset and determined if it is a conventional usage. By doing so, we identified seven major categories of conventional
usages. Then we reviewed each of the rest of the cases to further filter out the other conventional usages. Finally, 43,141
conventional usages have been identified, out of which 40,412 cases belong to the seven major categories. As the whitelist
is generated by manual analysis, it cannot cover all possible conventional usages. However, we believe that the majority
of the conventional usages have been identified (i.e., from the seven categories), new special cases can always be added
6https://www.virustotal.com
7Given a significance level 𝛼 = 0.001, if p-value < 𝛼 , there is one chance in a thousand that the difference between the two datasets is sue to a coincidence.
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1 // conventional usages - SDK version check
2 public void addJavascriptInterface(Object var1 , String var2) {
3 if (VERSION.SDK_INT < 17) {
4 TaoLog.e("HybridWebView", "addJavascriptInterface is disabled before API level 17 for security.");
5 } else {
6 super.addJavascriptInterface(var1 , var2);
7 }}
8
9 // conventional usages - User Interface
10 class ClickEvent implements View.OnClickListener {
11 public void onClick(View view) {
12 if(view.getId() == backButton.getId()){
13 webView.goBack ()
14 }
15 else if (view.getId() == reloadButton.getId()){
16 webView.reload ();
17 }}}
18
19 // conventional usages - File Handling
20 public static File inputstreamtofile(InputStream ins) {
21 File SDFile = Environment.getExternalStorageDirectory ();
22 File desDir=new File(SDFile.getAbsolutePath ());
23 File newFile=new File(desDir.getAbsolutePath () + File.separatorChar+"myPaint.png") ;
24 if(desDir.exists ()){
25 OutputStream os = new FileOutputStream(newFile);
26 while (( bytesRead = ins.read(buffer , 0, 8192)) != -1) {
27 os.write(buffer , 0, bytesRead);
28 }}}
29
30 // conventional usages - Permission Check
31 public static String getDeviceInfo(Context context) {
32 if (checkPermission(context , Manifest.permission.READ_PHONE_STATE)) {
33 String device_id = tm.getDeviceId ();
34 } else {
35 requestPermissions(context , new String [] {Manifest.permission.READ_PHONE_STATE}, REQUEST_CODE)
36 }}
37
38 // conventional usages - Network
39 public String g() {
40 var1 = (( ConnectivityManager)a.getSystemService("connectivity")) .getActiveNetworkInfo ();
41 var9 = var1.getType ();
42 if(var9 == 1){
43 var10 = (( WifiManager)a.getSystemService("wifi")).getDhcpInfo ();
44 }}
45
46 // conventional usages - Intent Management
47 public void onReceive(final Context context , Intent intent) {
48 String action = intent.getAction ();
49 if (action.equalsIgnoreCase ("android.net.conn.CONNECTIVITY_CHANGE") {
50 connectivityManager.getActiveNetworkInfo ();
51 }}
52
53 // conventional usages - SharedPreferences
54 public class VpnAddressIp{
55 public SharedPreferences sp;
56 public String VPNAddress () {
57 sp = context.getSharedPreferences("SP", Context.MODE_PRIVATE);
58 VPNflag = sp.getInt("VPNFlag", 1);
59 VPNAddress vpnaddress = new VPNAddress(context);
60 if (VPNflag == 1) {
61 VPNAddressBean bean = vpnaddress.queryVPN (1);
62 networkaddress = bean.getNetwork ();
63 }
64 return networkaddress;
65 }}

Listing 2. Examples of conventional usages.

to the list and incorporated into HiSenDroid in the future. We now elaborate on the seven major categories, each with
an example code snippet presented in Listing 2.

SDK Version. With Android system update, new APIs are defined to replace old ones. To maintain the compatibility
of apps across different Android versions, it is a common practice to check the SDK version before deciding the right
API to use. Lines 2~7 show a simplified code snippet of a legitimate conventional usage that fulfills all the rules we
defined for an HSO. The code checks whether the Android version is newer than Android level 17 (line 3), if so, the
Manuscript submitted to ACM
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app leverages the addJavascriptInterface() API to inject Javascript into the WebView (line 6), otherwise, it logs an error
message (line 4) as the API is not available in the Android version lower than 17. While SDK version check commonly
exists in both malware and benign apps (with 10,303 and 3,223 cases, respectively), this check does not intend to hide
the behaviors within the if-then-else statement and hence should be excluded from the HSO results.

User Interface. When the user interacts with UI widgets (e.g., press a button), it retrieves and compares the UI
widget’s id (i.e., a system API) to determine which widget has been fired. If there happened to be a sensitive API invoked
in one of the branches’ statements, this code block will be misidentified as HSO. Lines 10~17 show an example of a
button’s callback method, which checks the ID of the buttons (lines 12,15) and either go back to the previous webpage
(line 13) or reload the current page (line 16). User Interface has 8,052 instances in the malware set and 2,426 instances in
the benign set.

File. The existence of a file or a directory is usually checked before file operations, such as reading and writing files.
The code for checking file existence typically put the subsequent actions in one branch (where the file does exist), and
show an error message in the other branch (where the file does not exist). In some cases, it even has only the if-branch.
Therefore, it satisfies the rules mentioned above and will be mistakenly identified as an HSO. Our results have observed
7,217 and 1,701 cases in our malware set and benign set, respectively. A file checking example can be found in lines
20~28, where the code checks the existence of an external storage (line 24), and copy an image there (lines 26,27).

Permission. Since Android 6.0, the dangerous-level permissions need to be explicitly checked and requested before
accessing the APIs protected by these permissions. The example code for checking permission can be found in lines
31~36. It first checks whether the app has been granted READ_PHONE_STATE permission (line 32). Then, the app either
invoke the permission protected API (line 33) or request the missing permission (line 35) based on the check result.
Even though a sensitive API getDeviceId() is called in one branch, which behaves quite differently than the other branch,
it does not mean to hide this behavior. Therefore, it is regarded as a conventional usage. Permission check has appeared
6,727 and 936 times in the HSOs identified in the malware set and benign set, respectively.

Network. Network information (e.g., network type, connection status, etc.) is always checked before performing
network-related behaviors, ensuring that the network status is suitable for accomplishing the subsequent tasks. For
example, the network type (e.g., WiFi, cellular, etc.) is checked before downloading large files, and if it is on the
cellular network, the download will be suspended. Another example demonstrated in lines 39~44 examines the type
of connected network (line 41) and get its DHCP information if the phone is connected to WiFi (1 is the value of
ConnectivityManager#TYPE_WIFI). There are 5,224 an 744 identified HSO cases that are related to the Network in the
malware set and the benign set, respectively.

Intent. Intent is a crucial mechanism to assist the communication between different components in the Android
system. Intent has various legitimate usages, including starting activities and services, passing data and properties, etc.
Lines 47~51 demonstrate a legitimate example of handling the callback method of receiving an Intent. In this example, it
checks the action defined in the received Intent, and calls getActiveNetworkInfo() method (i.e., a sensitive API) if the
action is CONNECTIVITY_CHANGE. There are 1,911 an 1,011 identified HSO cases that are related to the Intent in the
malware set and the benign set, respectively.

SharedPreferences. In Android system, data can be saved as <key, value> pairs and stores as a SharedPreferences
object in a file that can be accessed by getSharedPreferences() interface. It provides a lightweight and easy-access data
store mechanism, which is widely used in storing small collection of data, such as configurations of the app. Reading the
values from the SharedPreferences and action accordingly is considered a legitimate behavior. Lines 54~65 illustrate an
example of using SharedPreferences, where the code retrieves the value of a configuration item “VPNFlag” (line 58) from
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a SharedPreferences object named “SP” (line 57), and query the corresponding VPN services accordingly (lines 60~62).
There are 878 and 358 cases involving the usage of SharedPreferences in our malware set and benign set, respectively.

Completeness of conventional usages. Since the conventional usage categories are summarized with manual
efforts on a given set of apps, they may not be representative and thereby may not cover all possible cases. Therefore,
in this work, we go one step deeper to further investigate the completeness of all the seven categories of conventional
usages by applying our approach to another set of randomly selected 10,000 malware and 10,000 benign apps from
AndroZoo [45]. We remind the readers that AndroZoo includes over 10 million Android apps that were collected from
both the official Google Play store and several third-party app markets. To avoid potential biases in our results, we made
additional efforts to remove potentially duplicated apps (i.e., different versions of the same app), and only the latest
version is retained. For the 20,000 apps, we apply HiSenDroid to analyze these apps and inspect the trigger conditions
that have appeared more than 50 times. We then manually determine if they are conventional usage. To do this, two of
the authors spent ten person-days manually summarizing conventional usages (e.g., API-API or Key-API pairs). After
manually checking the experimental results and the bytecode of apps, we have totally picked up 41,035 conventional
usages, among which 38,920 cases fall into the predefined whitelist (with a success rate of 94.8%). This result shows
that, despite testing on different apps, our whitelist is still quite stable and effective in eliminating conventional usages.

Apart from the aforementioned commonly appeared conventional usages, we further look into some of the uncom-
mon conventional usages. Our manual observation confirms that those uncommon conventional usages are indeed
legitimate HSOs that do not appear frequently in Android apps. We present two concrete examples of uncommon
conventional usages to illustrate this concept. One example is that an app first checks if the directory of downloads
exists (i.e., a standard directory to place files that have been downloaded by the user), and then automatically starts the
download using the android.app.DownloadManager#enqueue API once the download manager is ready and connectivity
is available. We consider it a conventional usage because it is against the second principle of suspicious HSO’s defi-
nition: the user does not intend to hide such behavior. In addition, given that there exist several substitute ways of
downloading files (e.g., Http request, URLConnection, BufferedInputStream, FileOutputStream, etc.), the native APIs lie
in android.app.DownloadManager are not that commonly used by app developers. Thus, we regarded it as an uncommon
conventional usage. As another example, the sensitive behavior of vibration could be triggered only when a user clicks
a certain button. We consider it also a conventional usage because it involves non-hidden behaviors. In fact, if app
developers intend to hide sensitive behaviors, it would be obvious that they won’t use vibration functionality to notify
users. Moreover, the usage of vibration is less common because it would annoy Android users, leading to a poor user
experience. Such cases appear less than 50 times in our dataset and thus we regard them as uncommon conventional
usage as well.

5 SUSPICIOUS HSO ANALYSIS

After eliminating conventional usages, all the remaining ones will be reported as suspicious HSOs. Among the 20,000
apps considered in this work, 1,304 of them, including 982 malware and 322 benign samples, were retained. These
apps have been reported to contain in total 2,201 suspicious HSOs, with 1,790 and 441 from malware and benign apps,
respectively. These numbers are recapped in Table 1. This experimental result shows that suspicious HSOs are widely
present in real-world Android apps. Figure 4 further illustrates the distribution of suspicious HSOs in our dataset. On
average, there are 2.0 and 1.4 HSOs in each malware sample and benign app, respectively.

In this work, the elimination of conventional usages is based on a pre-defined whitelist, which only includes
recurrently presented HSOs in benign apps. Some less frequent yet still legitimated HSOs could have been overlooked
Manuscript submitted to ACM
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Table 1. Number of suspicious HSOs.

Initial Dataset # HSOs # Suspicious HSOs
10,000 benign apps 9,368 (in 3,071 apps) 441 (in 322 apps)

10,000 malicious apps 35,974 (in 5,036 apps) 1,790 (in 982 apps)
Total 45,342 (in 8,107 apps) 2,201 (in 1,304 apps)

and hence result in suspicious ones. Indeed, the remaining suspicious HSOs may not always be true positives (i.e., may
contain a small number of false positives). To this end, we go one step further to calculate the precision of our approach
in pinpointing suspicious HSOs in Android apps. Unfortunately, there is no known ground truth available for evaluating
HSO usage in Android apps. Thus, we resort to a manual process to calculate the precision. In this work, we manually
inspected the bytecode of apps to see if HiSenDroid correctly and precisely identified the suspicious trigger rather than
those commonly appeared code blocks for normal usage. Here, we identify truly suspicious behavior (i.e., confirmed to
be true positive) only when the HSO is security-relevant and potentially brings harm to Android users. Specifically, we
rely on two principles to identify truly suspicious HSOs: (1) the hidden behavior involves security-relevant APIs that
are protected by Android permissions, classified following the latest Android API-permission mappings (cf. Section 3.1),
and (2) the sensitive APIs are intentionally hidden under dedicated trigger conditions. As a result, we count those who
meet the two aforementioned principles as true positives. For example, if an app first intends to retrieve Device ID, and
when unsuccessful, tries to read the MAC address, we will consider it as a false positive because it is against the second
principle: does not intend to hide such behavior. As another example, an app checks the build’s fingerprint to see if it is
running on popular emulators, and the sensitive behavior of retrieving subscriberId would be triggered only when it
is not running in an emulator. We consider it as a true positive because it involves security-relevant APIs and there
is sensitive behavior that is clearly hidden under trigger conditions. In our dataset, 1,304 apps have been reported to
contain at least one HSO. Among the 1,304 apps, HiSenDroid has identified 14,394 HSOs, for which 2,231 of them are
regarded as suspicious HSOs. By manually looking at each of those reported suspicious HSOs, we are able to confirm
that 1,938 out of 2,231 of them are true positive results (or 293 of them cannot be confirmed without deeply examining
the code), giving a precision of 86.8

Recall that the conventional usages are excluded in this work through a whitelist built through empirical evidence,
and the whitelist is only considered as a configuration option to our approach. We believe that the performance of
detecting suspicious HSOs could be further improved if we are able to construct a better whitelist of legitimate HSOs.
This is nevertheless outside the scope of this work. We hence consider it as our future work.

5.1 Trigger Conditions

Known trigger types such as time-bomb and anti-emulator techniques have been broadly studied, specific algorithms
for detecting such known trigger types have been developed [15, 27, 32]. Nevertheless, the community still lacks the
understanding of unknown trigger types. We therefore investigate the most frequent triggering conditions in the
suspicious HSOs detected by HiSenDroid.

HiSenDroid has identified 168 unique APIs that have been traced as the source of the triggers in detected suspicious
HSOs. To make it much clearer, we present all these system properties trigger conditions and environment parameters
trigger conditions in the artefact package 8. We then manually categorize them according to the types of objects they
accessed. Table 2 illustrates the trigger condition categories and examples of system APIs that are frequently leveraged

8https://bitbucket.org/se_anonymous/hisendroid/src/master/experiments_results/
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Fig. 4. Distribution of the number of suspicious HSOs in benign set and malware set.

to fulfill the trigger conditions discovered in HSOs. The top trigger condition categories include time (e.g., at a certain
time of a day), SMS (e.g., when receives SMS of certain formats), location (e.g., if the device is in certain countries),
system property (e.g., checks the device’s manufacturer), and package manager (e.g., if specific apps are installed).

Table 2. Categories of Trigger Conditions in HSO

Category Most Frequent Trigger API Examples

Time
util.Calendar#get
util.Date#getTime
util.Calendar#getTimeInMillis

System Properties
os.Build#MODEL
telephony.TelephonyManager#getSubscriberId
telephony.TelephonyManager#getDeviceId

Location
telephony.TelephonyManager#getSimCountryIso
telephony.TelephonyManager#getCellLocation
location.LocationManager#getLastKnownLocation

SMS Message
telephony.SmsManager#divideMessage
telephony.SmsManager#getDefault
telephony.SmsManager#getData

Package Manager
content.Context#getPackageManager
content.pm.PackageManager#getPackageInfo
content.pm.PackageManager#getApplicationInfo

Miscellaneous
android.widget.CheckBox#isChecked
android.app.KeyguardManager#isKeyguardLocked
java.net.NetworkInterface#getHardwareAddress

Here we elaborate on each trigger condition category with real-world suspicious HSO cases identified in our dataset.
Time Triggers compare time-related properties (such as current system time, time zone, etc.) with hard-coded values

to determine whether or not to execute the hidden sensitive behaviors. Listing 3 demonstrates a code snippet from app
com.wukongtv.wukongtv9, which leverages time-related triggers to hide suspicious behaviors. When the first time the
app launches, it writes the timestamp into the SharedPreferences (i.e., var0). It then compares the current system time
9SHA-256:3397079daa388bdbcdcc42b6834d3c792bf5c80ad24491e3893de7cfc2b11db7
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with the first launch time (line 6); if the time interval is greater than one day, it triggers the sensitive method bq.f()

(line 7) that retrieves the information (e.g., package name and process name) of running tasks (lines 10~15). Doing so
conceals the suspicious behaviors from automatic dynamic detection, which usually starts testing immediately after the
app is installed.
1 static void c(Context var0) {

2 Calendar var10000 = Calendar.getInstance ();

3 int var2 = var10000.get(6) * 100; // day_of_year

4 var2 += var10000.get (11); // hours_of_day

5 // var0 is retrieved from SharedPreferences

6 if (Math.abs(var0/100L - (long) (var2/100)) >= 1L) {

7 ab.h = bq.f(var0);

8 }}}

9
10 public static Long [][] f(Context var0) {

11 var31 = var3.getRecentTasks (10, 1);

12 while(var31.iterator ().hasNext ()){

13 // get package name and process name of recent tasks

14 ...

15 }}

Listing 3. Code Example of Time Trigger.

System Property Triggers leverage system properties, such as the phone model, the phone number, and hardware
information, to limit the sensitive behaviors within specific device brands (e.g., Samsung) or types (e.g., real device).
These triggers are also commonly adopted by anti-emulator techniques to detect the presence of emulators. Listing
4 demonstrates an anti-emulator example extracted from app com.gwsoft.imusic.controller 10, which checks if the
build’s fingerprint contains specific strings that indicate popular emulators (line 2). The sensitive behavior of retrieving
subscriberId (line 5) is only executed if it does not run in an emulator.
1 private static boolean a(Context var0) {

2 if (Build.FINGERPRINT.contains("vbox86p/vbox86p")&& !Build.FINGERPRINT.contains("ttVM_Hdragon/ttVM_Hdragon")&&
!Build.FINGERPRINT.contains("generic/sdk/generic")&& !Build.FINGERPRINT.contains("generic_x86/sdk_x86/generic_x86")

3 // omit other strings that fingerprints popular Android emulators

4 ){

5 var2 = (( TelephonyManager)var0.getSystemService("phone")) .getSubscriberId ();

6 var11.put("imsi", var2);}}

Listing 4. Code Example of System Property Trigger.

SMS Triggers Utilize the content, type, and phone number of received SMS messages to hide sensitive behaviors. An
example derived from app com.fingersoft.hillmotor11 is shown in Listing 5. When an SMS message is received, it checks
the originating address of the message (line 4). If it matches a pre-defined value (e.g., 10 or 11 etc in this example), the
behavior that repeatedly sends a message (line 6) to the same number via a text message service.
1 //var2 is the originating address retrieved from SMS

2 //var3 is the message body

3 public boolean repeat(Context var1 , String var2 , String var3) {

4 if ((var2.startsWith("10") || var2.startsWith("11") || var2.startsWith("12")) && !var2.equals("114") &&

!var2.equals("12306") && !var2.equals("116114") && !var2.equals("12580")) {

5 SmsManager var13 = SmsManager.getDefault ();

6 var25.sendTextMessage(var2 , (String)null , "Y", var16 , var12);

7 }}

Listing 5. Code Example of SMS Trigger.

10SHA-256:8c679a7c57a7fbb355fb363d3784cc8380655701d482837869edd95f3a3ea470
11SHA-256:95e1cf498dec79351a9d104f5e9fb0110c267e9eff0099ada475d8832a2afb7302521
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Location Triggers obscure sensitive behaviors with fine grained (e.g., latitude and longitude) and coarse grained
(e.g. country) location information. Listing 6 shows an example derived from com.inter.

apps.patqut.apk 12 which queries the country code of the device (saved as var1), and checks if it is in Malaysia (line 4). If
so, the app then triggers the postLoginData2() method (line 5), which retrieves the device’s id (line 9) and hands it over
to another activity for further malicious behaviors.
1 TelephonyManager var3 = (TelephonyManager)this.getSystemService("phone");

2 String var1 = var3.getSimCountryIso ().toUpperCase ();

3 public void getin(String var1) {

4 if (var1.equals("MY")) {

5 this.postLoginData2 ();

6 }}

7
8 public void postLoginData2 () {

9 String var2 = (( TelephonyManager)this.getSystemService("phone")) .getDeviceId ();

10 // hand over the obtained DeviceId to a new activity

11 ...

12 }

Listing 6. Code Example of Location Trigger.

Package Manager Triggers scan the list of installed apps and inspect if specific apps (usually anti-virus tools) are
installed before conducting any sensitive behaviors. Listing 7 shows a code snippet taken from flash15.1.apk 13 which
searches for AhnLab V3 Mobile Plus 2.0 (i.e., an anti-virus tool) in the list of installed apps (line 1~7). If the anti-virus
tool is not installed (line 10), it then starts its malicious behaviors. Specifically, it gets the package name of the current
active activity (lines 11, 12), and puts it into sleep if it is a bank app. After that, it launches a new activity that contains
a phishing web page to steal user’s bank credentials.
1 private boolean judgeAV () {

2 this.pm = this.getPackageManager ();

3 this.listAppcations = this.pm.getInstalledApplications (8192);

4 for(int v = 0; v < listAppcations.size(); ++v) {

5 if(listAppcations(v).name.equalsIgnoreCase("AhnLab V3 Mobile Plus 2.0")){

6 return true;}

7 return false;}

8
9 public void run() {

10 if (!AutBan.this.judgeAV()) {

11 List var2 = (( ActivityManager)AutBan.this.getSystemService ("activity")).getRunningTasks (1);

12 String var1 = (( RunningTaskInfo)var2.get(0)).topActivity .getPackageName ();

13 // if the top activity is a bank app , it puts the activity into sleep and start a phising page

14 ...

15 }};

Listing 7. Code Example of Package Manager Trigger.

Other Triggers. Besides themost frequent trigger categories, we also observed some sophisticated triggers specifically
designed to counter automated dynamic testing approaches. Listing 8 shows an example taken from a music player
app com.gwsoft.imusic.controller14. The app hides sensitive behaviors that retrieve the device’s information (lines 8~12)
behind a trigger that will only be fired when an item on the song list (i.e., mCatalogSongsList) is clicked (line 2). The
trick here is that automated dynamic testing tools running on an emulator are likely not to have any music files and,

12SHA-256:22c9d7738073a7ac8f9b58029057c2741e89faac76b623837db2f3a8bb2d93c5
13SHA-256:fdaba7f032ee7ff9adf799713b25d4c2fef86ddbbe8709bf6ec021505b8f1d0d
14SHA-256:8c679a7c57a7fbb355fb363d3784cc8380655701d482837869edd95f3a3ea470
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Fig. 5. Categories of Trigger Conditions in HSO and Sensitive APIs in Malware.

therefore, will have no items on the list to click. Hence, only legitimate users who intend to use it to play music will
have the chance to trigger the sensitive behavior.
1 // contains at least one song in the list

2 public void onItemClick(AdapterView <?> var1 , View var2 , int var3 , long var4) {

3 if (mCatalogSongsList != null && var3 + -1 >= 0 && var3 + -1 < mCatalogSongsList.size()){

4 CountlyAgent.onEvent(CuttingActivity.this , "activity_diy_do_re", String.valueOf(var3));

5 }}

6
7 public static void onEvent(Context var0 , String var1 , String var2) {

8 HashMap var3 = new HashMap;

9 var3.put("phone", getIMSI ());

10 var3.put("ip", getLocalIpAddress ());

11 var3.put("app_version", versionName);

12 var3.put("imei",getDeviceId ());

13 }

Listing 8. Code Example of Other Trigger.

5.2 Sensitive APIs involved in suspicious HSOs

While the invocation of sensitive APIs does not necessarily mean it is malicious, sensitive APIs deliberately hidden in an
HSB do raise its suspicion. HiSenDroid has identified 134 unique hidden sensitive APIs that appeared 3,195 times in our
dataset. Figure 5(b) presents the top ten classes of the most frequently invoked sensitive APIs in malware set and benign

set. The most involved APIs are network related, including the ones in URL, ConnectivityManager, andWifiManager

classes. TheWebView ((displays web pages)) and SmsManager (manages SMS operations such as sending text messages)
are also prevalently used in HSOs. Other commonly involved API classes include PowerManager (controls the power
state of the device such as keeping the screen stay on), LocationManager (provides access to the system location services
such as getting last known location), ActivityManager (gives information about activities and services such as getting
running tasks on the phone), TelephonyManager (provides access to information of the telephony services such as
phone number), and AccountManager (manages user’s online accounts). The detailed most common APIs in HSOs can
be found in Table 3.
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Interestingly, while most of the API classes have significantly more instances in malware samples than benign apps,
WebView is an exception. We therefore took an in-depth look into benign apps with WebView APIs in their HSOs and
observed that 34 out of 50 cases are free apps that display advertisement web pages for revenue.

Table 3. Details of The Top 10 Classes of Hidden Sensitive APIs in HSO

Class Most Frequent Sensitive API Examples

ConnectivityManager
net.ConnectivityManager#getActiveNetworkInfo
net.ConnectivityManager#getNetworkInfo
net.ConnectivityManager#getAllNetworkInfo

TelephonyManager
telephony.TelephonyManager#getDeviceId
telephony.TelephonyManager#getSubscriberId
telephony.TelephonyManager#getCellLocation

URL
net.URL#openConnection
net.URL#getContent
net.URL#openStream

WifiManager
net.wifi.WifiManager#getScanResults
net.wifi.WifiManager#getConnectionInfo
net.wifi.WifiManager#getWifiState

LocationManager
location.LocationManager#getLastKnownLocation
location.LocationManager#requestLocationUpdates
location.LocationManager#getBestProvider

ActivityManager
app.ActivityManager#getRunningTasks
app.ActivityManager#getRecentTasks
app.ActivityManager#moveTaskToFront

PowerManager
os.PowerManager.WakeLock#release
os.PowerManager.WakeLock#acquire()
os.PowerManager.WakeLock#acquire(long)

WebView
webkit.WebView#setBackgroundColor
webkit.WebView#addJavascriptInterface
webkit.WebView#loadDataWithBaseURL

SmsManager
telephony.SmsManager#sendTextMessage
telephony.SmsManager#sendMultipartTextMessage
telephony.SmsManager#sendDataMessage

AccountManager
accounts.AccountManager#getAccountsByType
accounts.AccountManager#getAccounts
accounts.AccountManager#getUserData

5.3 Trigger Condition to Hidden Sensitive API Pairs

We now investigate the relationships between trigger conditions and the hidden sensitive APIs accessed in their
corresponding HSOs so as to identify common patterns leveraged by attackers to achieve malicious purposes. Figure 6
graphically summarizes such relationships, i.e., trigger-to-hidden-sensitive-API pairs, where each node represents an
API in either the trigger conditions or the hidden sensitive branches, while each edge denotes the connections between
them. HiSenDroid has identified 404 nodes within which 346 are APIs in trigger conditions, 134 are APIs in hidden
sensitive branches, and 15 APIs exist in both triggers and hidden sensitive branches. There are 2,847 edges found
between them, which are illustrated in different colors according to their trigger conditions’ categories.

Table 4 further details the top 10 pairs found in HSOs with their categories and counts. The most frequent HSO
patterns are to hide network-related activities behind retrieving the phone’s location. For instance, the top one pattern
Manuscript submitted to ACM
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<java.util.Locale: java.util.Locale US>

<java.net.URL: java.net.URLConnection openConnection()>

<android.telephony.TelephonyManager: java.lang.String getSimCountryIso()>

<java.net.URL: java.net.URLConnection openConnection(java.net.Proxy)>

<android.net.ConnectivityManager: android.net.NetworkInfo getActiveNetworkInfo()>

<android.content.Context: java.lang.Object getSystemService(java.lang.String)>

<android.net.NetworkInfo: java.lang.String getExtraInfo()>

<java.util.Locale: java.util.Locale getDefault()>

<android.net.ConnectivityManager: android.net.NetworkInfo getNetworkInfo(int)>

<java.util.Calendar: java.util.Calendar getInstance(java.util.Locale)>

<android.webkit.WebView: void <init>

<android.webkit.WebView: void loadUrl(java.lang.String)>

<java.util.Locale: java.lang.String getLanguage()>

<android.webkit.CookieSyncManager: android.webkit.CookieSyncManager createInstance(android.content.Context)>

<android.location.LocationManager: java.util.List getAllProviders()>

<android.telephony.TelephonyManager: java.lang.String getSubscriberId()>

<android.telephony.TelephonyManager: android.telephony.CellLocation getCellLocation()>

<android.net.wi�.Wi�Manager: java.util.List getScanResults()>

<java.util.Locale: java.util.Locale CHINA>

<android.location.LocationManager: java.lang.String getBestProvider(android.location.Criteria,boolean)>

<java.net.HttpURLConnection: void connect()>

<android.location.Location: double mLongitude>

<android.location.LocationManager: boolean isProviderEnabled(java.lang.String)>

<android.os.Looper: void loop()>

<android.location.LocationManager: java.util.List getProviders(boolean)>

<android.app.Noti�cationManager: void notify(int,android.app.Noti�cation)>

<android.telephony.TelephonyManager: java.lang.String getDeviceId()>

<java.util.TimeZone: java.util.TimeZone getTimeZone(java.lang.String)>

<java.util.Calendar: long getTimeInMillis()>

<java.util.Calendar: int get(int)>

<android.location.Location: double mLatitude>

<android.net.ConnectivityManager: android.net.NetworkInfo[] getAllNetworkInfo()>

<org.apache.http.impl.client.DefaultHttpClient: org.apache.http.HttpResponse execute(org.apache.http.client.methods.HttpUriRequest)>

<android.content.Context: android.content.Context getApplicationContext()>

<java.util.Calendar: java.util.Calendar getInstance(java.util.TimeZone,java.util.Locale)>

<android.content.SharedPreferences: int getInt(java.lang.String,int)>

<android.telephony.TelephonyManager: java.util.List getNeighboringCellInfo()>

<android.content.res.Con�guration: java.util.Locale locale>

<android.content.res.Resources: android.content.res.Con�guration getCon�guration()>

<android.view.ContextThemeWrapper: android.content.res.Resources mResources>

<android.content.Intent: java.lang.String getStringExtra(java.lang.String)>

<java.text.DecimalFormat: java.lang.String format(double)>

<android.content.Intent: android.os.Parcelable getParcelableExtra(java.lang.String)>

<android.location.Location: double getLatitude()>

<android.location.Location: double getLongitude()>

<android.accounts.Account: java.lang.String name>

<android.bluetooth.BluetoothDevice: java.lang.String getName()>

<android.accounts.AccountManager: android.accounts.Account[] getAccountsByType(java.lang.String)>

<android.support.v4.content.ContextCompat: java.io.File[] getExternalFilesDirs(android.content.Context,java.lang.String)>

<android.content.Context: java.lang.String getString(int)>

<android.app.DownloadManager: android.net.Uri getUriForDownloadedFile(long)>

<android.content.Intent: android.os.Bundle getExtras()>

<android.telephony.TelephonyManager: java.lang.String getNetworkCountryIso()>

<android.content.Context: android.content.SharedPreferences getSharedPreferences(java.lang.String,int)>

<android.media.MediaPlayer: void stop()>

<android.content.SharedPreferences: java.lang.String getString(java.lang.String,java.lang.String)>

<java.io.File: java.lang.String getName()>

<android.content.ContentResolver: java.lang.String getType(android.net.Uri)>

<android.content.Context: android.content.ContentResolver getContentResolver()>

<android.os.Bundle: java.lang.String getString(java.lang.String)>

<android.database.Cursor: java.lang.String getString(int)>

<android.net.Uri: android.net.Uri parse(java.lang.String)>

<android.accounts.AccountManager: java.lang.String getUserData(android.accounts.Account,java.lang.String)>

<android.preference.PreferenceManager: android.content.SharedPreferences getDefaultSharedPreferences(android.content.Context)>

<java.io.File: java.lang.String[] list()>

<java.io.File: java.lang.String getAbsolutePath()>

<android.accounts.Account: java.lang.String type>

<android.content.Intent: java.lang.String getAction()>

<java.net.URI: java.lang.String getPath()>

<android.content.Intent: android.net.Uri getData()>

<android.os.PowerManager$WakeLock: void release()>

<android.net.Uri: java.lang.String getQueryParameter(java.lang.String)>

<android.support.v4.app.FragmentHostCallback: android.content.Context getContext()>

<android.accounts.AccountManager: android.accounts.Account[] getAccounts()>

<android.content.pm.PackageInfo: java.lang.String versionName>

<java.math.BigDecimal: java.lang.String toString()>

<java.math.BigInteger: java.lang.String toString()>

<android.content.pm.PackageManager: android.content.pm.PackageInfo getPackageInfo(java.lang.String,int)>

<android.app.Activity: android.content.SharedPreferences getSharedPreferences(java.lang.String,int)>
<android.content.Intent: long getLongExtra(java.lang.String,long)>

<android.telephony.gsm.GsmCellLocation: int getCid()>

<android.provider.Settings$Secure: java.lang.String getString(android.content.ContentResolver,java.lang.String)>

<java.util.Locale: java.lang.String toString()>

<java.io.File: java.io.File[] listFiles()>

<android.webkit.MimeTypeMap: android.webkit.MimeTypeMap getSingleton()>

<android.widget.EditText: android.text.Editable getEditableText()>

<android.telephony.cdma.CdmaCellLocation: int getBaseStationId()>

<android.location.Location: �oat getAccuracy()>

<android.content.Context: android.content.pm.PackageManager getPackageManager()>

<android.content.Context: java.lang.String getPackageName()>

<android.widget.Filter: void �lter(java.lang.CharSequence)>

<android.accounts.AccountManager: android.accounts.AccountManager get(android.content.Context)>

<android.content.res.Resources: java.lang.String getString(int)>

<android.net.Uri: java.lang.String getPath()>

<android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String)>

<android.webkit.MimeTypeMap: java.lang.String getMimeTypeFromExtension(java.lang.String)>

<android.widget.EditText: android.text.Editable getText()>

<android.location.Location: android.os.Bundle getExtras()>

<android.database.DatabaseUtils: java.lang.String sqlEscapeString(java.lang.String)>

<android.widget.CheckBox: boolean isChecked()>

<android.webkit.WebIconDatabase: void removeAllIcons()>

<android.webkit.WebView: void clearCache(boolean)>

<org.apache.http.client.HttpClient: org.apache.http.HttpResponse execute(org.apache.http.client.methods.HttpUriRequest)>

<android.hardware.Camera$CameraInfo: int facing>

<android.hardware.Camera: android.hardware.Camera open()>

<android.os.Build$VERSION: java.lang.String RELEASE>

<android.content.SharedPreferences: long getLong(java.lang.String,long)>

<android.app.ActivityManager: java.util.List getRunningTasks(int)>
<org.apache.http.HttpResponse: org.apache.http.Header getFirstHeader(java.lang.String)>

<android.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)>

<java.security.Security: java.security.Provider[] getProviders()>

<android.net.wi�.Wi�Manager: android.net.wi�.Wi�Info getConnectionInfo()>

<android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,�oat,android.location.LocationListener,android.os.Looper)>

<org.apache.http.StatusLine: int getStatusCode()>

<android.widget.ImageView: int getHeight()>

<android.webkit.WebView: boolean dispatchKeyEvent(android.view.KeyEvent)>

<org.apache.http.HttpResponse: org.apache.http.StatusLine getStatusLine()>

<android.widget.ToggleButton: boolean isChecked()>

<android.media.MediaRecorder: void setAudioSource(int)>

<android.content.ComponentName: java.lang.String getClassName()>

<android.util.Log: int wtf(java.lang.String,java.lang.String)>

<android.bluetooth.BluetoothAdapter: android.bluetooth.BluetoothAdapter getDefaultAdapter()>

<android.media.MediaRecorder: void setVideoSource(int)>

<com.android.sohu.sdk.common.toolbox.f: int d()>

<com.google.a.j: java.lang.Object a(java.lang.String,java.lang.Class)>

<android.net.wi�.Wi�Manager: boolean setWi�Enabled(boolean)>

<android.content.ContentResolver: void setSyncAutomatically(android.accounts.Account,java.lang.String,boolean)>

<android.app.ListActivity: android.widget.ListView mList>

<android.app.Activity: boolean mFinished>

<android.webkit.WebView: void resumeTimers()>

<android.widget.ListView: android.widget.ListAdapter getAdapter()>

<android.app.KeyguardManager: boolean inKeyguardRestrictedInputMode()>

<android.media.AudioManager: void setSpeakerphoneOn(boolean)>

<java.net.InetAddress: java.net.InetAddress getByName(java.lang.String)>

<com.android.internal.telephony.ITelephony: boolean endCall()>

<android.content.ContentResolver: void addPeriodicSync(android.accounts.Account,java.lang.String,android.os.Bundle,long)>

<android.webkit.WebViewProvider: boolean canGoForward()>

<android.webkit.WebView: void goForward()>

<android.widget.ListAdapter: java.lang.Object getItem(int)>

<com.google.�rebase.messaging.RemoteMessage: java.util.Map a()>

<com.android.internal.telephony.ITelephony: void answerRingingCall()>

<android.os.Bundle: int getInt(java.lang.String)>

<android.support.v4.view.ViewPager: int getCurrentItem()>

<android.support.v4.app.Fragment: android.support.v4.app.h D>

<java.sql.ResultSet: java.lang.String getString(java.lang.String)>

<android.webkit.WebHistoryItem: java.lang.String getUrl()>

<android.app.ActivityManager: java.util.List getRecentTasks(int,int)>

<android.app.Activity: boolean isFinishing()>

<org.apache.http.util.EntityUtils: java.lang.String toString(org.apache.http.HttpEntity,java.lang.String)>

<android.content.res.AssetManager: java.io.InputStream open(java.lang.String)>

<android.content.ContentResolver: void setIsSyncable(android.accounts.Account,java.lang.String,int)>

<com.google.android.gms.ads.formats.NativeContentAd: java.util.List getImages()>

<android.net.wi�.Wi�Manager: boolean isWi�Enabled()>

<android.text.Editable: java.lang.String toString()>

<android.widget.AutoCompleteTextView: void performFiltering(java.lang.CharSequence,int)>

<android.widget.SeekBar: int getProgress()>

<android.provider.Settings$System: boolean putInt(android.content.ContentResolver,java.lang.String,int)>

<android.app.ActivityManager: void killBackgroundProcesses(java.lang.String)>

<android.webkit.WebBackForwardList: android.webkit.WebHistoryItem getItemAtIndex(int)>

<org.apache.http.util.EntityUtils: java.lang.String toString(org.apache.http.HttpEntity)>

<java.sql.Connection: java.sql.Statement createStatement()>

<com.google.android.gms.ads.internal.client.zzl: com.google.android.gms.ads.internal.util.client.zza zzcN()>

<com.google.android.gms.ads.internal.util.client.zza: boolean zzhr()>

<android.content.SharedPreferences: boolean getBoolean(java.lang.String,boolean)>

<android.app.Activity: com.android.internal.app.ActionBarImpl mActionBar>

<android.webkit.WebView: void addJavascriptInterface(java.lang.Object,java.lang.String)>

<android.content.IntentFilter: boolean hasCategory(java.lang.String)>

<android.webkit.WebViewProvider: boolean canGoBack()>

<android.webkit.WebView: void goBack()>

<android.content.pm.ApplicationInfo: java.lang.String packageName>

<android.content.pm.PackageManager: void getPackageSizeInfo(java.lang.String,android.content.pm.IPackageStatsObserver)>

<java.net.ServerSocket: java.net.Socket accept()>

<android.app.ActivityManager: void restartPackage(java.lang.String)>

<android.os.Bundle: java.io.Serializable getSerializable(java.lang.String)>

<android.content.Context: android.content.res.AssetManager getAssets()>

<android.os.Bundle: int getInt(java.lang.String,int)>

<android.net.VpnService: android.content.Intent prepare(android.content.Context)>

<android.support.v4.app.Fragment: android.support.v4.app.FragmentActivity mActivity>

<android.content.BroadcastReceiver$PendingResult: int mResultCode>

<android.os.Vibrator: void vibrate(long)>

<java.sql.Statement: java.sql.ResultSet executeQuery(java.lang.String)>

<java.net.Socket: java.net.InetAddress getInetAddress()>

<android.widget.Filter: void �lter(java.lang.CharSequence,android.widget.Filter$FilterListener)>

<android.content.ContextWrapper: android.content.Context mBase>

<android.webkit.WebView: void reload()>

<android.bluetooth.BluetoothAdapter: boolean isEnabled()>

<android.support.v4.content.a: boolean r(java.lang.String)>

<java.net.URL: java.io.InputStream openStream()>

<org.w3c.dom.Node: java.lang.String getNodeValue()>

<java.net.InetAddress: java.lang.String getHostAddress()>

<com.google.android.gms.common.GooglePlayServicesUtil: int isGooglePlayServicesAvailable(android.content.Context)>

<android.support.v4.a.g: int a(android.content.Context,java.lang.String)>

<android.graphics.PointF: �oat x>

<android.view.View: boolean startDrag(android.content.ClipData,android.view.View$DragShadowBuilder,java.lang.Object,int)>

<android.bluetooth.BluetoothPro�le: java.util.List getConnectedDevices()>

<android.media.AudioManager: void setBluetoothScoOn(boolean)>

<android.app.Activity: android.content.Context getApplicationContext()>

<java.net.ServerSocket: void <init>

<android.app.Service: android.app.Application mApplication>

<android.graphics.PointF: �oat y>

<java.net.Proxy: java.net.SocketAddress address()>

<java.util.zip.ZipFile: java.util.Enumeration entries()>

<android.app.Activity: android.content.ContentResolver getContentResolver()>

<android.webkit.WebViewProvider: java.lang.String getUrl()>

<java.net.NetworkInterface: java.util.Enumeration getNetworkInterfaces()>

<com.google.a.j: com.google.a.m g()>

<java.util.UUID: boolean equals(java.lang.Object)>

<android.widget.FrameLayout: int getChildCount()>

<android.webkit.WebView: void clearHistory()>

<android.support.v4.content.ContextCompat: int b(android.content.Context,java.lang.String)>

<android.bluetooth.BluetoothAdapter: int getState()>
<android.media.AudioManager: void startBluetoothSco()>

<android.media.AudioManager: boolean isBluetoothScoAvailableO�Call()>

<android.bluetooth.BluetoothAdapter: int getPro�leConnectionState(int)>

<android.support.v4.a.a: int a(android.content.Context,java.lang.String)>

<android.provider.CalendarContract$Instances: android.database.Cursor query(android.content.ContentResolver,java.lang.String[],long,long)>

<android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,�oat,android.location.LocationListener)>

<com.google.a.o: com.google.a.j a(java.io.Reader)>

<android.widget.AutoCompleteTextView: android.widget.Filter mFilter>

<android.app.Activity: int getRequestedOrientation()>

<android.webkit.CookieManager: boolean hasCookies()>

<java.util.EnumSet: boolean contains(java.lang.Object)>

<android.view.SurfaceView: void updateWindow(boolean,boolean)>

<android.media.AudioManager: void stopBluetoothSco()>

<android.accounts.AccountManager: void invalidateAuthToken(java.lang.String,java.lang.String)>

<android.content.ContentResolver: void setMasterSyncAutomatically(boolean)>

<android.os.ParcelUuid: java.util.UUID getUuid()>

<android.webkit.WebView: void loadData(java.lang.String,java.lang.String,java.lang.String)>

<android.provider.Settings$Secure: int getInt(android.content.ContentResolver,java.lang.String)>

<android.support.v7.pp: boolean o()>

<android.webkit.WebView: void destroy()>

<android.support.v4.a.b: int a(android.content.Context,java.lang.String)>

<android.content.Intent: short getShortExtra(java.lang.String,short)>

<android.bluetooth.BluetoothAdapter: boolean isDiscovering()>

<android.support.v4.a.c: int a(android.content.Context,java.lang.String)>

<android.telephony.TelephonyManager: java.util.List getAllCellInfo()>

<android.widget.RelativeLayout: int getVisibility()>

<android.os.Bundle: boolean containsKey(java.lang.String)>

<android.os.PowerManager$WakeLock: void acquire()>

<java.net.NetworkInterface: byte[] getHardwareAddress()>

<android.media.CamcorderPro�le: android.media.CamcorderPro�le get(int)>

<java.util.Enumeration: boolean hasMoreElements()>

<android.content.ClipData: android.content.ClipData newPlainText(java.lang.CharSequence,java.lang.CharSequence)>

<android.view.IWindowSession: boolean performDrag(android.view.IWindow,android.os.IBinder,�oat,�oat,�oat,�oat,android.content.ClipData)>

<android.bluetooth.BluetoothAdapter: boolean enable()>

<java.net.HttpURLConnection: java.lang.String getHeaderField(java.lang.String)>

<android.widget.RadioGroup: int getCheckedRadioButtonId()>

<android.os.Bundle: java.lang.Object get(java.lang.String)>

<android.app.Activity: android.view.WindowManager mWindowManager>

<android.hardware.SensorEvent: �oat[] values>

<org.apache.commons.lang3.StringUtils: boolean isNotEmpty(java.lang.CharSequence)>

<android.webkit.WebView: void loadDataWithBaseURL(java.lang.String,java.lang.String,java.lang.String,java.lang.String,java.lang.String)>

<android.support.v4.b.a: int a(android.content.Context,java.lang.String)>

<android.media.RingtoneManager: android.media.Ringtone getRingtone(android.content.Context,android.net.Uri)>

<android.bluetooth.BluetoothAdapter: java.util.Set getBondedDevices()>

<android.bluetooth.BluetoothAdapter: boolean disable()>

<android.view.IWindowSession: android.os.IBinder prepareDrag(android.view.IWindow,int,int,int,android.view.Surface)>

<android.os.SystemProperties: java.lang.String get(java.lang.String)>

<com.google.�rebase.messaging.c: java.util.Map a()>

<java.net.URL: java.lang.Object getContent()>

<android.app.IActivityManager: int getRequestedOrientation(android.os.IBinder)>

<android.widget.LinearLayout: int getVisibility()>

<android.telephony.TelephonyManager: java.lang.String getLine1Number()>

<android.widget.LinearLayout: android.view.ViewGroup$LayoutParams getLayoutParams()>

<android.app.Dialog: boolean isShowing()>

<android.accounts.AccountManager: android.accounts.AccountManagerFuture getAuthToken(android.accounts.Account,java.lang.String,android.os.Bundle,android.app.Activity,android.accounts.AccountManagerCallback,android.os.Handler)>

<android.media.CamcorderPro�le: int videoFrameHeight>

<android.widget.TextView: java.lang.CharSequence getText()>

<android.media.AudioManager: boolean isMusicActive()>

<android.media.AudioRecord: void <init>

<android.widget.Button: int getId()>

<android.support.v4.content.a: int b(android.content.Context,java.lang.String)>

<android.media.AudioManager: int requestAudioFocus(android.media.AudioManager$OnAudioFocusChangeListener,int,int)>

<com.google.a.m: boolean a(java.lang.String)>

<android.widget.AdapterView: java.lang.Object getItemAtPosition(int)>

<android.webkit.WebView: void onPause()>

<android.media.AudioManager: void setMode(int)>

<android.widget.RelativeLayout: boolean isShown()>

<android.net.wi�.Wi�Manager: boolean startScan()>

<android.app.Activity: android.app.SearchManager mSearchManager>

<android.view.ContextThemeWrapper: java.lang.Object getSystemService(java.lang.String)>

<android.net.wi�.Wi�Info: int getIpAddress()>

<android.os.Bundle: boolean getBoolean(java.lang.String,boolean)>

<android.support.v4.app.Fragment: android.os.Bundle mArguments>

<android.os.Handler: android.os.Looper getLooper()>

<android.app.usage.UsageStats: java.lang.String getPackageName()>

<android.content.pm.PackageManager: java.util.List queryIntentActivities(android.content.Intent,int)>

<android.content.pm.ApplicationInfo: java.lang.CharSequence loadLabel(android.content.pm.PackageManager)>

<android.content.pm.PackageInfo: java.lang.String packageName>

<android.content.pm.PackageManager: android.content.pm.ApplicationInfo getApplicationInfo(java.lang.String,int)>

<android.os.Message: android.os.Bundle getData()>

<android.content.pm.PackageManager: android.content.pm.PackageInfo getPackageArchiveInfo(java.lang.String,int)>

<android.content.pm.PackageManager: java.util.List getInstalledPackages(int)>

<android.content.pm.PackageInfo: int versionCode>

<android.content.pm.PackageManager: boolean hasSystemFeature(java.lang.String)>

<android.content.pm.ActivityInfo: java.lang.String packageName>

<android.content.pm.Signature: java.lang.String toCharsString()>

<android.content.pm.PackageManager: android.content.pm.ResolveInfo resolveActivity(android.content.Intent,int)>

<android.content.pm.PackageInfo: android.content.pm.Signature[] signatures>

<android.content.pm.ResolveInfo: android.content.pm.ActivityInfo activityInfo>

<android.app.Activity: android.content.pm.PackageManager getPackageManager()>

<android.content.ComponentName: java.lang.String getPackageName()>

<java.util.StringTokenizer: java.lang.String nextToken()>

<android.content.Context: android.content.pm.ApplicationInfo getApplicationInfo()>

<android.content.pm.ApplicationInfo: java.lang.String nativeLibraryDir>

<android.util.Log: int wtf(java.lang.String,java.lang.String,java.lang.Throwable)>

<android.app.usage.UsageStatsManager: java.util.List queryUsageStats(int,long,long)>

<android.content.pm.Signature: byte[] toByteArray()>

<android.app.ActivityManager$RunningTaskInfo: android.content.ComponentName topActivity>

<java.lang.System: long currentTimeMillis()>

<android.telephony.SmsManager: void sendTextMessage(java.lang.String,java.lang.String,java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>

<android.telephony.SmsMessage: java.lang.String getOriginatingAddress()>

<android.os.Message: java.lang.Object obj>

<android.telephony.SmsManager: java.util.ArrayList divideMessage(java.lang.String)>

<com.android.internal.telephony.ISms: void sendText(java.lang.String,java.lang.String,java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>

<android.telephony.SmsManager: android.telephony.SmsManager getDefault()>

<com.android.internal.telephony.ISms: void sendMultipartText(java.lang.String,java.lang.String,java.util.List,java.util.List,java.util.List)>

<android.os.Message: int arg1>

<android.os.Bundle: java.lang.String[] getStringArray(java.lang.String)>

<android.os.Bundle: int[] getIntArray(java.lang.String)>

<android.telephony.SmsManager: void sendMultipartTextMessage(java.lang.String,java.lang.String,java.util.ArrayList,java.util.ArrayList,java.util.ArrayList)>

<android.telephony.SmsMessage: java.lang.String getDisplayOriginatingAddress()>

<android.os.Message: int arg2>

<android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()>

<android.os.Message: int what>

<android.app.PendingIntent: android.app.PendingIntent getBroadcast(android.content.Context,int,android.content.Intent,int)>

<android.provider.Telephony$Sms$Intents: android.telephony.SmsMessage[] getMessagesFromIntent(android.content.Intent)>
<android.provider.Telephony$Threads: long getOrCreateThreadId(android.content.Context,java.lang.String)>

<java.util.Properties: java.lang.Object get(java.lang.Object)>

<android.os.Build: java.lang.String MODEL>

<android.webkit.WebView: void setBackgroundColor(int)>

<android.telephony.TelephonyManager: java.lang.String getSimOperator()>

<android.provider.Settings$System: int getInt(android.content.ContentResolver,java.lang.String,int)>

<android.os.Vibrator: void vibrate(long[],int)>

<java.util.Properties: java.lang.String getProperty(java.lang.String,java.lang.String)>

<android.app.WallpaperManager: void setStream(java.io.InputStream)>

<android.app.WallpaperManager: void setBitmap(android.graphics.Bitmap)>

<android.app.Application: android.content.Context getApplicationContext()>

<android.os.Build: java.lang.String DEVICE>

<android.provider.Settings$System: int getInt(android.content.ContentResolver,java.lang.String)>

<android.telephony.TelephonyManager: int getCallState()>

<android.media.AudioManager: boolean isWiredHeadsetOn()>

<android.os.Build: java.lang.String FINGERPRINT>

<android.os.Build: java.lang.String BRAND>
<android.provider.Settings$System: android.net.Uri getUriFor(java.lang.String)>

<android.database.Cursor: int getColumnIndex(java.lang.String)>

<android.os.Build: java.lang.String MANUFACTURER>

<android.media.AudioManager: void setParameters(java.lang.String)>

<java.net.URLEncoder: java.lang.String encode(java.lang.String,java.lang.String)>

<android.telephony.TelephonyManager: int getSimState()>

<java.util.Properties: java.lang.String getProperty(java.lang.String)>

<java.util.Properties: java.util.Set entrySet()>

<java.net.URLConnection: java.io.InputStream getInputStream()>

<java.io.ByteArrayOutputStream: byte[] toByteArray()>

<org.apache.http.HttpResponse: org.apache.http.Header[] getAllHeaders()>

<java.util.Calendar: java.util.Calendar getInstance()>

<android.content.SharedPreferences: java.util.Map getAll()>

<android.content.Intent: java.io.Serializable getSerializableExtra(java.lang.String)>

<java.util.Date: long getTime()>

<android.os.SystemClock: long elapsedRealtime()>

<android.net.wi�.Wi�Manager$Wi�Lock: void acquire()>

<android.os.SystemClock: long uptimeMillis()>

<java.io.File: long lastModi�ed()>

<android.net.wi�.Wi�Manager: int getWi�State()>

<android.text.format.Time: int hour>

<android.support.v4.content.a: long b(android.content.Context,java.lang.String,java.lang.String)>

<java.util.Date: boolean after(java.util.Date)>

<android.provider.Settings$System: boolean putLong(android.content.ContentResolver,java.lang.String,long)>

<android.app.Noti�cationManager: void notify(java.lang.String,int,android.app.Noti�cation)>

<java.util.Calendar: java.util.Calendar getInstance(java.util.TimeZone)>

<java.sql.Timestamp: long getTime()>

<java.util.Calendar: java.util.Date getTime()>

<java.util.GregorianCalendar: long getTimeInMillis()>

<java.util.Calendar: boolean after(java.lang.Object)>

<android.os.Build$VERSION: int SDK_INT>
<java.net.URLConnection: void connect()>

<android.media.AsyncPlayer: void play(android.content.Context,android.net.Uri,boolean,int)>

Time System Properties Package Manager Location SMS Others

Fig. 6. The HSO Trigger-Sensitive API Pairs Graph.

that appeared 135 times in our dataset requests the SIM provider’s country code. Based on the user’s location, it then
determines whether or not to open a web page, and what web pages (e.g., advertisement pages) to display to the user.
Time-related HSO patterns are also widely found in the detected HSOs. They firstly compare the current system time
with preset values. If the condition fulfills (e.g., the app is running for more than ten minutes), they try to initialize
a network connection and send out the user’s private information such as IMEI, phone number, etc. More than 250
instances in our dataset leverage this pattern to steal users’ private information stealthily. Other frequent HSO patterns
on the top list are involved in anti-emulator tricks include checking the phone’s model name and checking if specific
apps are installed (which could indicate if it is an emulator) before acquiring sensitive information.

Table 4. Top 10 Trigger Condition to Hidden Sensitive API Pairs.

Category Trigger Condition APIs Hidden Sensitive APIs Counts
Location TelephonyManager#getSimCountryIso java.net.URL#openConnection 135
Location TelephonyManager#getCellLocation ConnectivityManager#getActiveNetworkInfo 131
Time java.lang.System#currentTimeMillis ConnectivityManager#getNetworkInfo 80
Time java.lang.System#currentTimeMillis ConnectivityManager#getAllNetworkInfo 66
Time java.lang.System#currentTimeMillis ConnectivityManager#getActiveNetworkInfo 57
System Properties android.os.Build#MODEL TelephonyManager#getSubscriberId 54
System Properties android.os.Build#MODEL Settings$System#putInt 54
SMS android.os.Message#obj PowerManager$WakeLock#release 52
Package Manager PackageManager#getInstalledPackages ActivityManager#getRunningTasks 51
Time java.lang.System#currentTimeMillis DefaultHttpClient#execute 49

5.4 Suspicious HSOs in Third-party Code

Finally, we further look into the identified HSOs to check if they are introduced by app developers or reused by
third-party libraries. For the sake of simplicity, we consider the code only located in the unique app package (also known
as the app id) as developers newly implemented code while all the other code (i.e., in packages not connected with the
app’s domain name) as third-party code (e.g., third-party libraries). Among the 2,201 HSOs, surprisingly, over half of
them (i.e., 1,342) is contributed by third-party code (i.e., 1,173 HSOs in malware and 169 in benign apps), among which
malware tends to be more favored to introduce HSOs through third-party code than benign apps. This experimental
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evidence suggests that attackers have more incentives to achieve malicious behaviors through third-party code as it
allows easy code reuse that makes it much easier to implement new malware.

5.5 Comparison with state-of-the-art

We now compare our approach with state-of-the-art works targeting the problem of detecting hidden sensitive
operations. To the best of our knowledge, there are two closely related approaches: HSOMiner[57] and TriggerScope[27].
Unfortunately, the source code of HSOMiner is not publicly available, and it is infeasible to compare against it because
they trained data on the authors’ labelled dataset, which has also not been publicly released. We have contacted the
authors about launching their approach to analyze Android apps. Unfortunately, we have not yet received any response
from them. Similarly, the authors of TriggerScope have also not made it publicly available. As a result, we cannot
compare with TriggerScope as well. Fortunately, Jordan Samhi has provided a re-implemented version15 of TriggerScope
based on the details given in its research paper. The re-implemented version is named as TSOpen (referring to as the
open implementation of TriggerScope) and has already been leveraged by previous studies [63]. In this work, we resort
to comparing our approach with TriggerScope by actually comparing it with TSOpen.

To set up the experiments for a fair comparison, we run TSOpen on the same 10,000 malware and 10,000 benign
apps selected in evaluating HiSenDroid in section 4 (as indicated in the second and third columns in Table 5). The
experiments are executed under the same environment, i.e., the same server and the same timeout threshold (i.e., 20
minutes).

The experimental results are summarized in Table 5. Overall, the number of HSOs found by HiSenDroid in goodware
and malware (i.e., 441 and 1,790, respectively) is larger than those found by the TSOpen (i.e., 110 and 237, respectively).
Recall that when evaluating the performance of HiSenDroid at the beginning of Section 5, we have manually validated
the 2,231 suspicious HSOs yielded by HiSenDroid, for which 1,938 are confirmed to be true positives, giving a precision
of 86.8%. In this work, we further conduct the same manual validation for the results of TSOpen. Our manual validation
confirms that TSOpen has at least correctly detected 90.2% of logic bombs. This result is expected as TSOpen only
detects three types of HSOs (i.e., time, location, and SMS) while HiSenDroid aims at detecting a broader scope of HSOs.
To enable a fair comparison16, in this work, we will only consider HiSenDroid’s results falling in these three categories.

As highlighted in Table 5 (cf. Columns 6-8), HiSenDroid detects more HSOs in all of the three categories. Among the
detected HSOs, we find that 265 HSOs (186, 48, and 31 in time, location, and SMS, respectively) were detected by both
tools (as summarized in the fourth row in Table 5). Besides that, there are 802 HSOs (360, 357 and 85 in time, location,
and SMS, respectively) exclusively detected by HiSenDroid, while still 82 HSOs (38, 1, and 43 in time, location, and SMS,
respectively) identified by TSOpen are not flagged by HiSenDroid.

On a further investigation, we found the reason why HiSenDroid failed in detecting the 82 HSOs is that HiSenDroid’s
definition of potentially-sensitive APIs is different from the definition in TSOpen. In this work, we consider all the APIs
that are protected by Android permissions as potentially sensitive, while TSOpen takes a different approach to pre-select
such a set of sensitive APIs17. Their set of sensitive APIs includes both permission-protected and permission-free APIs.
For example, TSOpen treats the following two APIs, <android.content.BroadcastReceiver: void abortBroadcast()> and
<android.os.Handler: boolean sendEmptyMessage(int)>, as sensitive APIs. However, HiSenDroid does not consider
them as sensitive because they are not protected by permissions. Furthermore, considering that TriggerScope was

15https://github.com/JordanSamhi/TSOpen
16We consider the original outputs of HiSenDroid and TSOpen for comparison since only a small number of their results could be false positive.
17The sensitive APIs are a part of internal implementation of TSOpen, which is not configurable.
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Table 5. The comparison results between HiSenDroid and TSOpen.

Tool # Analyzed # Analyzed # HSOs in # HSOs in # Time # Location # SMS
Name Goodware Malware Goodware Malware HSOs HSOs HSOs

HiSenDroid 10,000 10,000 441(in 322 apps) 1,790(in 982 apps) 546 405 116
TSOpen 10,000 10,000 110(in 51 apps) 237(in 123 apps) 229 49 69
Common 10,000 10,000 71 194 186 48 31

published in 2016 and the Android API rapidly evolves, it is understandable that certain APIs (especially the latest
ones) are not included, resulting in possibly less suspicious HSOs. Moreover, as claimed in their paper, TriggerScope
only focused on characterizing logic bombs on some given behaviors, while HiSenDroid treated each sensitive API in
state-of-the-art Android API-permission mappings [7, 13, 14, 36] as a target API, leading to better performance in terms
of both quantity and variety in detected HSOs, compared with TriggerScope.

5.6 Impact of Code Obfuscation

As experimentally revealed by Zeng [73] and Moser et al. [53], trigger conditions of HSOs could be obfuscated in order
to evade the detection of advanced semantics-based malware analyzers. Therefore, we are interested in checking to
what extent our approach is impacted by obfuscation, especially when applied to pinpoint HSOs in real-world Android
apps. Since there is no existing dataset that is suitable for our experiment, we resort to preparing such a dataset from
scratch, i.e., to form a set of obfuscated app pairs for which each pair contains a non-obfuscated app and its obfuscated
counterpart. We start by randomly selecting 1,000 malware from our dataset and then apply Obfuscapk[10] on them to
generate their obfuscated counterparts. Obfuscapk is a modular Python tool designed to directly obfuscate closed-source
Android apps. Obfuscapk supports six types of obfuscation operations, which could be configured to achieve different
granularities when obfuscating Android apps.

The six types of operations are summarized as follows.

(1) Nop: Insert junk code. Nop, short for no-operation, is a dedicated instruction that does nothing. This technique
just inserts random nop instructions within every method implementation.

(2) Rename: operations that change the names of the used identifiers (classes, fields, methods).
(3) Reorder: This technique consists of changing the order of basic blocks in the code. When a branch instruction is

found, the condition is inverted (e.g., branch if lower than, becomes branch if greater or equal than) and the
target basic blocks are reordered accordingly. Furthermore, it also randomly rearranges the code abusing goto
instructions.

(4) Reflection: This technique analyzes the existing code looking for method invocations of the app, ignoring the calls
to the Android framework (see AdvancedReflection). If it finds an instruction with a suitable method invocation
(i.e., no constructor methods, public visibility, enough free registers etc.) such invocation is redirected to a custom
method that will invoke the original method using the Reflection APIs.

(5) Advanced Reflection: Uses reflection to invoke dangerous APIs of the Android Framework. To find out if a
method belongs to the Android Framework, Obfuscapk refers to the mapping discovered by Backes et al. [14]

(6) Encryption: packaging encrypted code/resources and decrypting them during the app execution.When Obfuscapk
starts, it automatically generates a random secret key (32 characters long, using ASCII letters and digits) that
will be used for encryption.
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Table 6. The comparison results of HiSenDroid before and after obfuscation techniques in malware.

Obfuscator Nop Rename Reorder Reflection Advanced Reflection Encryption
# HSOs Before Obfuscation 144(in 821 apps) 18(in 332 apps) 146(in 792 apps) 13(in 345 apps) 145(in 821 apps) 141(in 811 apps)
# HSOs After Obfuscation 144(in 821 apps) 18(in 332 apps) 146(in 792 apps) 4(in 345 apps) 64(in 821 apps) 141(in 811 apps)

Common 144 18 146 4 64 141

In this work, we are interested in checking the impact of all of these six types of operations on our approach. Hence,
for each of the selected apps and each obfuscation type, we launch Obfuscapk to generate an obfuscated app. For the
1,000 selected apps, we expect to generate 6,000 obfuscated apps and eventually form 6,000 obfuscated app pairs. We
then launch HiSenDroid to analyze those apps and compare the number of detected HSOs obtained on apps with and
without obfuscation. Table 6 summarizes our experimental results.

Expectedly, except for reflection, our approach is resilient to all the other four obfuscation types. Our deep analysis
reveals that the reason why HiSenDroid is unaffected by Nop obfuscator is that Nop obfuscator will only insert junk
code, which is a dedicated instruction that does nothing. In terms of Rename and Reorder obfuscator, their code
transformations will retain the functionality as the original APK thus will not impact our approach. Also, the reason
why the Encryption obfuscator has no effect on HiSenDroid is that it will only encrypt constant strings in code, which
will not impact the data flow analysis of our approach. In terms of reflection obfuscator and advanced Reflection
obfuscator, both trigger conditions and sensitive API invocations can be redirected to other code entities by reflection
calls, while those entities cannot be always resolved statically since the reflection call targets may not be statically
resolved, which would lead to false negatives of HiSenDroid. The remaining two types that have an impact on our
approach are all related to reflection, which performs complicated code changes that will likely break the data flow
processes. Nevertheless, even for reflection, our approach can still detect around one-third of HSOs.

To better mitigate the impact of reflection-based obfuscation on our approach, we further propose to strengthen
the capability of HiSenDroid by integrating the state-of-the-art reflection analysis tool DroidRA to handle reflection
usages [67]. After statically locating the reflective calls, DroidRA can transform a reflection-included Android app to a
reflection-free version, where the located reflective calls will be represented by standard java calls. The newly generated
reflection-free app would allow HiSenDroid to yield reflection-aware analysis results. Specifically, considering the 345
apps and 821 apps that are obfuscated by reflection calls and advanced reflection calls, respectively, we first apply
DroidRA to convert them into 1,166 reflection-free apps. After that, we execute HiSenDroid to perform HSO analysis on
these new apps and compare the number of detected HSOs obtained based on the original apps. As a result, HiSenDroid
is able to detect all 13 reflection-relevant HSOs which are obfuscated with reflection obfuscation, while detecting 124
(with a success rate of 85.5%) reflection-relevant HSOs that are obfuscated with advanced reflection obfuscation. The
reason why HiSenDroid fails on detecting a small portion of reflection-relevant HSOs is that DroidRA may not resolve
all the advanced reflective calls. For example, DroidRA relies on COAL [56] solver to infer reflective calls, which might
introduce false negatives, leading to reflection calls unresolved and thus can not be successfully detected by HiSenDroid.
Nevertheless, our experimental result shows the capability of HiSenDroid in achieving most of the reflection-aware
hidden sensitive operation detections.

6 IMPLICATION: DETECTION OF HIDDEN SENSITIVE DATA FLOWS

After being able to automatically detect suspicious HSOs, we now go one step further to investigate how such HSOs
can bring security harms to users. There might be different security implications, in this work, we only focus on
sensitive data leaks, which is also part of our initial attempts towards demonstrating the usefulness of identifying
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suspicious HSOs. Specifically, we are interested in detecting hidden sensitive data flows (HSDFs), i.e., leaking sensitive
data collected through HSOs. To the best of our knowledge, hidden sensitive data flow has not yet been explored by our
community. Unfortunately, it has not even been clearly defined. To this end, we first define HSDF following the previous
rules leveraged to define HSOs (cf. Section 2). Let 𝑆 denote a sensitive data flow (also known as a private data leak
as mentioned in the FlowDroid work [12]), we consider that a sensitive data flow happens when a sensitive “tainted”
information goes from a source (e.g. the API method getDeviceId) to a given sink (e.g. the API method sendTextMessage).

Definition 3 [Hidden Sensitive Data Flow (HSDF)]: A sensitive data flow 𝑆 is an HSDF if the source of 𝑆 appears
in the hidden sensitive branch of a HSO.

Although HSDFs have not yet been specifically exploited by the state-of-the-art, our community has proposed
various approaches to detect general sensitive data-flows. One of the most famous approaches is FlowDroid [12], a
state-of-the-art static analyzer that performs taint analysis to pinpoint sensitive data leaks flowing from a pre-defined
set of source methods to sink methods. These source and sink methods can be easily customized. In this work, we
leverage FlowDroid to detect sensitive data flows related to HSOs. If a sensitive data flow reported by FlowDroid has its
source method invoked in an HSO, we regard it as an HSDF.

By applying FlowDroid18 to 1,304 apps (982 malware and 322 goodware) involving suspicious HSOs, we find that 67
apps further involve HSDFs, accounting to in total 401 HSDFs. While manually checking the experimental results of
FlowDroid and HiSenDroid, we find that 16 sensitive APIs, which are frequently invoked within HSOs to collect system
information, are not taken into account by the source set of FlowDroid by default. These APIs (listed in Table 7), after
manual confirmation, should still be considered as source methods by FlowDroid as they are responsible for retrieving
sensitive data that should not be exposed to other parties. Here, to clarify, when doing the experiment, we include
both of the default source and sink methods of FlowDroid and the additional sensitive APIs involved in HSOs in the
SourceAndSink.txt file of FlowDroid. During the manual process, we have not found any sensitive API (i.e., involving
dangerous operations) that should be additionally considered as a sink method by FlowDroid. Hence, we add the 16
APIs to the source set of Flowdroid and keep its sink set unchanged (hereinafter referred to this version as FlowDroid +
HiSenDroid) and relaunch it on the same set of apps. This time, we are able to disclose 1,110 HSDFs from 1,304 apps.
This result shows that suspicious HSOs could be leveraged to leak users’ sensitive information outside of their devices.
As an example shown in Listing 5, the sensitive data device id and subscriber id, which are unique to the device and
hence can be leveraged to uniquely track the phone, are eventually sent outside the device through a text message.

Considering general sensitive data-flows (SDF), we compare FlowDroid with HiSenDroid on the same dataset. In
general, among the 1,304 apps, HisenDroid+FlowDroid detect 31,215 SDF, which is significantly larger than that of the
original FlowDroid (which is 16,946). This result, as expected19, does experimentally demonstrate the effectiveness of
our approach towards revealing more data flows in Android Apps. Our experimental results are illustrated in Figure 7,
which indicates the distribution of the number of sensitive data flows in each app yielded by HisenDroid+FlowDroid
and HiSenDroid. This result shows that FlowDroid + HiSenDroid has significantly improved the original results of
FlowDroid, which shows the usefulness of our identified HSOs and suggests that there is a strong need to characterize
hidden sensitive operations.

18In this work, the latest development branch of FlowDroid[3] is leveraged for the experiments. It should be roughly equivalent to the FlowDroid 2.8
release.
19We remind the readers that, in this work, we did not improve FlowDroid by itself but only enlarged its source set as some of the sensitive APIs, which
are favored by HSOs, are overlooked by FlowDroid.
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Fig. 7. Results of Sensitive data Flows in Android Apps.

Table 7. The list of selected source methods that, by default, are not included by FlowDroid.

API Signature
android.net.wifi.WifiManager#getConnectionInfo()
android.app.ActivityManager#getRunningTasks
android.app.ActivityManager#getRecentTasks
android.accounts.AccountManager#getUserData
android.net.ConnectivityManager#getNetworkInfo
android.provider.Settings$System#getUriFor
android.telephony.TelephonyManager#getNeighboringCellInfo
android.telephony.TelephonyManager#getCellLocation
android.accounts.AccountManager#getAccountsByType
android.net.wifi.WifiManager#getScanResults
android.net.wifi.WifiManager#getConfiguredNetworks
java.net.URL#openConnection
android.net.ConnectivityManager#getAllNetworkInfo
android.net.VpnService#prepare
android.hardware.Camera#open
android.net.ConnectivityManager#getActiveNetworkInfo

7 LIMITATIONS

The main limitation of our approach lies in the backward data-flow analysis, which applies only context-insensitive
analysis and therebymay lead to imprecise results. Furthermore, at themoment, our approach is not aware of dynamically
loaded code, reflectively accessed methods, and native code. Subsequently, HiSenDroid may overlook certain app features
and hence result in false-negative results.

Second, HiSenDroid data-flow analysis may be susceptible to obfuscation techniques. According to some former
research works [29, 61, 64], obfuscation (especially those involving complicated changes of the program code) may
cause false negatives of the static analysis approach. Indeed, as demonstrated by Moser [53], obfuscation is actually a
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challenge for almost all static program analyzers. Just like all prior efforts on static analysis of HSOs [27], [57], we do
not consider the apps whose branch conditions have been deeply obfuscated. Fortunately, the majority of obfuscations
applied to Android apps only involve basic transformations (such as renaming [24]) that do not involve complicated
code changes (e.g., structural or logic changes, or invoke sensitive code through reflections, etc.), which will not impact
the analysis of our approach. This has also been confirmed by our exploratory study towards understanding the impact
of obfuscation on our approach, as discussed in Section 5.6. Considering reflection obfuscation, integrating DroidRA
with HiSenDroid as a pipeline is demonstrated to be effective in eliminating the impact of reflection calls. Therefore,
we believe that the technical capabilities and our results would not be significantly impacted by code obfuscation.
Nevertheless, as part of our future work, we plan to integrate other approaches developed by our fellow researchers to
mitigate these long-standing challenges, e.g., by applying DroidRA [40, 67] to mitigate the impact of reflection-enhanced
code obfuscations.

Although summarized from many sensitive operations, the definition of HSO rules may not be perfect. Indeed, on the
one hand, the set of sensitive operations considered for summarization may not be representative, and the set of apps
leveraged to obtain such sensitive operations may not be represented as well. On the other hand, the manual analysis
leveraged to summarize the rules may contain errors since it is known that human efforts are prone to errors. Apart
from that, the definition of HSO is based on empirical evidence that might not be perfect. There might be complicated
cases that do not follow the definition but still manifest themselves as hidden sensitive behaviors in practice, leading to
false negatives. This limitation can also apply to the conventional usage analyses since the list of conventional usages is
manually summarized based on a given set of apps. The subsequent outputs (i.e., whitelist) may not be representative.
Nonetheless, our follow-up study using a set of 20,000 new apps has shown that this impact is negligible. Furthermore,
in this work, we have attempted to provide detailed insights to explain why HSOs are reported as such. This knowledge
is expected to be useful for practitioners and researchers to characterize conventional usages and for security analysts
to understand suspicious HSOs.

Moreover, since the original implementation of TriggerScope is not publicly available, we have resorted to an
open re-implementation version of TriggerScope to compare our approach against it. This alternative decision may
result in possible biases as the re-implementation may not really represent the original version. Unfortunately, the
re-implemented version is the only source we can publicly locate to fulfill the comparison. As of our future work, we
plan to also evaluate the reliability of the re-implementation of TriggerScope so as to mitigate potential biases, if any.

Last but not the least, the performance of the hidden sensitive data flow analysis may be impacted by the collection
of sensitive APIs (i.e., sources). On one hand, some sensitive APIs, especially the latest ones, might be overlooked by
FlowDroid and hence cannot be considered for pinpointing potential leaks, leading to false-negative results. In this
work, our experimental results have confirmed this. On the other hand, some historical sensitive APIs included in
FlowDroid’s source list might be deprecated and subsequently removed from a certain Android API version [42]. There
is hence no need to include them when analyzing apps targeting higher API versions, as these APIs will not be used
anymore, not even mentioning causing sensitive data leaks. To overcome these impacts, we believe there is a need to
keep updating FlowDroid’s list of sensitive APIs, in order to achieve a more effective and sound sensitive data flow
analysis for Android apps. Furthermore, ideally, FlowDroid should also not be expected to include APIs that are released
after itself.
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8 RELATEDWORK

Hidden sensitive operations have long existed in Android malware as evasive technologies have widely been used by
attackers to hide their malicious behaviors. Our research community has hence proposed various approaches to tackle
these issues. We now discuss some of the representative works from two angles, including the evasive techniques that
have been proposed to hide malicious code from being identified, and the detection methods proposed to pinpoint such
evasive techniques.

Evasive Techniques. There has been a number of research works on hiding malicious behavior from detection,
most of which focus on evading the dynamic test platforms such as virtual machines and emulators. Early works target
the Windows platform [17], while recently the trend has been moved to Android [18, 21, 31, 48, 50, 59, 68]. These
evasive techniques detect the presence of a simulated environment by either looking into the system properties of the
testing platform (e.g., system fingerprints, hardware capabilities, etc.) [18, 59, 68], or leveraging a reverse Turing test
that examines if the app interacts with a human user [21]. For instance, Diao et al. [21] observed that programmed
interaction has specific patterns of input and interaction frequency, which is different from real users. Overall, the
evasive techniques usually hide malicious activities in an if-then-else statement. The hidden malicious behavior will
only be set off when certain conditions are fulfilled (e.g., not in an emulator); otherwise dummy benign operations
are triggered. The prevalence of such evasive techniques motivated us to investigate the HSOs in Android apps and
propose HiSenDroid to detect them.

Detection of Evasive Techniques. The pervasive evasive techniques (e.g., anti-emulator techniques) have mo-
tivated the research community to take countermeasures. Great effort has been spent on detecting known types of
hidden behaviors that hampers the dynamic analysis process. These works include detecting anti-emulator techniques
[15, 32, 33, 44] and generic logic-bombs [16, 20, 27, 58, 75]. The approaches of detecting anti-emulator techniques
compare the behavioral deviation of the tested apps on the various environments when feeding them the same input.
The fundamental idea is that if the app behaves differently in different environments, it is likely trying to evade one or
more analysis platforms (usually referred to as bare-metal analysis in the literature) [15, 32, 33, 44]. While these early
works investigate a critical category of hidden operations (i.e., anti-emulator), the proposed methods lack generalization
that cannot be applied to detect other types of hidden operations emerging recently.

Besides the detection of anti-emulator techniques, several works are focusing on uncovering other trigger-based
behaviors. These approaches leverage symbolic execution or static code analysis and instrumentation to expose the
hidden branches in an if-then-else statement [16, 20, 27, 58, 75]. As examples, Zheng et al. [75] proposed to leverage a
static analysis approach to retrieve all UI related events, and use dynamic testing to trigger them and log the invocation
of sensitive APIs. Unlike HiSenDroid that leverages static analysis, the dynamic analysis based approach introduces
significant system- and time-overhead. The coverage of the dynamic analysis is also in question. Fratantonio et al.
[27] proposed TriggerScope to detect hidden triggered behaviors based on the observation that certain triggers (i.e.,
time, location, and SMS related triggers) always involve the comparison of specific types of input (i.e., system time,
system location, and received SMS). Symbolic execution is then leveraged to detect such narrow conditions. While
TriggerScope is effective in detecting the above-mentioned three types of logic bombs, it cannot be generalized to detect
hidden operations triggered by other types of conditions, such as system property, which has been found pervasive in
Android apps.

Similar to HiSenDroid, another line of work attempts to detect unknown types of trigger-based behaviors [57], [69].
A prominent example is HSOMiner [57], which extracts static characteristics of hidden behaviors as features and trains

Manuscript submitted to ACM



Demystifying Hidden Sensitive Operations in Android apps 27

a machine learning model to identify the code blocks that observe similar patterns. The major differences between
our work and HSOMiner are twofold. First, HSOMiner requires a large number of manually labelled training samples,
which involves extensive human experts’ effort. Its performance also heavily relies on the manually labelled training
data, which is prone to errors. Our method, on the other hand, is an automatic process without human intervention.
Second, HSOMiner, as a machine learning based approach, lacks explanations of the decisions. In contrast, our static
code analysis based approach outputs the full call traces of detected HSOs, and provides more detailed information for
further analysis.

9 CONCLUSION

In this work, we present to the community a prototype tool called HiSenDroid, which performs a static code analysis
to uncover hidden sensitive operations that will only be triggered under special circumstances such as at a specific
location or in a certain time period. Additionally, HiSenDroid goes one step deeper to provide details aiming at helping
security analysts understand why a given hidden sensitive operation is flagged as such. Experimental results over 20,000
apps, including both malicious and benign apps, show that hidden sensitive operations are indeed quite frequently
presented in Android apps and HiSenDroid is effective in automatically discovering them. Moreover, with the help of
FlowDroid, a state-of-the-art static taint analyzer, we further experimentally find that hidden sensitive operations could
eventually lead to privacy leaks.
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