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Abstract 1

Training users to correctly identify potential security threats like social engineering attacks 2

such as phishing emails is a crucial aspect of cybersecurity. One challenge in this training 3

is providing useful educational feedback to maximize student learning outcomes. Large 4

Language Models (LLMs) have recently been applied to wider and wider applications, 5

including domain-specific education and training. These applications of LLMs have many 6

benefits, such as cost and ease of access, but there are important potential biases and con- 7

straints within LLMs. These may make LLMs worse teachers for important and vulnerable 8

subpopulations including the elderly and those with less technical knowledge. In this work 9

we present a dataset of LLM embeddings of conversations between human students and 10

LLM teachers in an anti-phishing setting. We apply these embeddings onto an analysis 11

of human-LLM educational conversations to develop specific and actionable targets for 12

LLM training, fine-tuning, and evaluation that can potentially improve the educational 13

quality of LLM teachers and ameliorate potential biases that may disproportionally impact 14

specific subpopulations. Specifically, we suggest that LLM teaching platforms either speak 15

generally or mention specific quotations of emails depending on user demographics and 16

behaviors, and to steer conversations away from an over focus on the current example. 17

Keywords: Cybersecurity, Phishing, Large Language Models, Education, Embeddings 18

1. Introduction 19

Recent advances in Generative Artificial Intelligence (GAI) including the advent of 20

foundation models such as Large Language Models (LLMs) have been fundamentally 21

transformative, demonstrating unprecedented performance across a wide range of tasks, 22

including text generation, sentiment analysis, and question answering [1,2]. While the 23

generalist nature of LLMs and other GAI models has facilitated their broad applicability, 24

it poses significant limitations in scenarios requiring nuanced, user-specific responses [3], 25

such as in educational contexts like anti-phishing training [4]. One of the most critical 26

efforts to prevent social harm done by these new technologies is the effective training 27

against social engineering, deepfakes of news, and other nefarious applications of GAI. 28

The complexity of social engineering attacks has significantly increased in recent 29

months due in part to the advanced sophistication of GAI models [5]. These models can be 30

used to quickly design new attacks from scratch using various methods such as translating 31

previously used databases of attacks or creating complex novel attacks leveraging images, 32

video, text, and audio [6] in an attempt to increase the success of social engineering attempts. 33
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Despite the significant threat posed by GAI models such as LLMs in accelerating social 34

engineering attacks [7–9], only 23% of companies polled by Proofpoint in 2024 had trained 35

their employees on GAI safety [10]. 36

One reason for this limitation of adequate training regarding GAI based phishing 37

attacks is the high cost associated with traditional training methods such as in-person 38

lecturing [11], and the time required to develop remote learning materials [12]. However, 39

research has suggested that virtual learning of social engineering training can be more 40

effective than in-person training [11]. A recent approach to addressing this educational 41

limitation is to leverage GAI models themselves to design educational materials while 42

providing feedback to users [4]. In the context of social engineering training in identifying 43

phishing emails, this approach has the benefit of allowing for a training platform that can 44

simultaneously generate realistic phishing attempts. While LLM supported training and 45

education has benefits of easy access and scalability, it has issues related to domain specific 46

knowledge and individualization of feedback in educational settings [13]. 47

In this work we begin by presenting a dataset that serves to augment the original 48

dataset presented by Malloy et al [4] containing a set of messages sent between human 49

students and an LLM teacher in an anti-phishing education platform. We augment this 50

dataset with two embedding dictionaries; the first is a set of embeddings of the messages 51

sent by LLM teachers and human students; the second is a set of embeddings of open 52

responses that students provided to describe the method that they used to determine if 53

emails were phishing or not. This dataset includes embeddings formed by 10 different 54

embedding models ranging from open to closed models and a range of embedding sizes. 55

After describing this presented dataset, we compare the 10 different embedding 56

models in their correlation to human student learning outcomes. Next, we evaluate the 57

usefulness of these embedding dictionaries by comparing the cosine similarity of the 58

embeddings of messages sent by LLM teachers and students with the embeddings of the 59

emails presented to students. These cosine similarity measurements are compared with 60

several metrics of student learning performance, demographics, and other measures of the 61

educational platform. We conclude this paper with a description of the results we present 62

and a contextualization of these results with specific recommendations for improving LLM 63

teaching methods. 64

2. Related Work 65

2.1. LLMs in Education 66

One example of a domain specific application of LLM education is discussed in 67

[14] which focuses on databases and information systems in higher education. Here, 68

the authors find that issues such as bias and hallucinations can be mitigated in domain 69

specific educational applications through the use of an LLM-based chatbot ’MoodleBot’, a 70

specialized system tailored for a single specific educational course. These results highlight 71

the importance of domain-specific knowledge in the design and evaluation of LLM teaching 72

platforms. Meanwhile, a more generalist educational LLM platform is presented in [15] 73

called multiple choice question generator (MCQGen), that can be applied to a variety of 74

domains through the integration of Retrieval Augmented Generation and an human-in- 75

the-loop process that ensures question validity. 76

Beyond applications of LLMs as merely educational tools is research into use cases 77

of agentic LLMs that make decisions regarding student education. One recent survey by 78

Chu et al. [16] of LLM applications on education focuses on the use of LLM agents, which 79

extend the traditional use-case of LLMs beyond a tool into a more independent model that 80

makes decisions and impacts an environment [17]. This survey highlights the importance 81

of mitigating hallucinations and ensuring fairness in educational outcomes. This insight 82
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guides an important focus of this work which compares different potentially vulnerable 83

subpopulations in the way that they converse with an LLM chatbot. Many examples exist 84

in the literature of LLM bias demonstrating potential causes of unfairness, such as racial 85

bias [18], gender bias [19], or age [20]. These biases become increasingly relevant in 86

domain specific applications of LLMs in education, as the ways in which biases interact 87

with education become more complete than in other LLM applications [21]. 88

2.2. LLM Personalization in Education 89

Personalization techniques have traditionally been extensively researched within in- 90

formation retrieval and recommendation systems but remain relatively underexplored 91

in the context of LLMs [1]. Developing personalized and domain-specific educational 92

LLMs involves leveraging user-specific data such as profiles, historical interactions, and 93

preferences to tailor model outputs [22]. Effective personalization of LLMs is critical in do- 94

mains such as conversational agents, education, healthcare, and content recommendation, 95

where understanding individual preferences significantly enhances user satisfaction and 96

engagement [22,23]. 97

Recent literature highlights various strategies for personalizing LLMs, broadly cat- 98

egorized into fine-tuning approaches, retrieval augmentation, and prompt engineer- 99

ing [2,22,23]. Fine-tuning methods adapt LLM parameters directly to user-specific contexts, 100

showing significant performance improvements in subjective tasks like sentiment and emo- 101

tion recognition [2]. Fine-tuned LLMs have been applied onto educational domains such 102

as the Tailor-Mind model which generates visualizations for use in educational contexts 103

[24] However, these approaches are resource-intensive and often impractical for real-time 104

personalization across numerous users [25]. 105

Retrieval augmentation, on the other hand, enhances personalization efficiency by 106

dynamically incorporating external user-specific information at inference time without 107

extensive model retraining [26]. Methods like LaMP utilize user profiles and historical data, 108

selectively integrating relevant context through retrieval techniques [1]. More recently, 109

frameworks such as OPEN-RAG have significantly improved reasoning capabilities within 110

retrieval-augmented systems, especially when combined with open-source LLMs [23]. 111

Prompt engineering and context injection represent lighter-weight approaches where user- 112

specific information is embedded within the prompt or input context, guiding the LLM 113

toward personalized responses [22,27]. RAG has been applied on to domain-specific 114

educational contexts like computing education [28] through the use of small LLMs that 115

incorporate RAG. Other recent approaches in LLM education with RAG seek to personalize 116

pedagogical content by predicting user learning styles [29], These methods, while efficient, 117

are limited by context length constraints and impermanent personalization. 118

2.3. Automatic Phishing Detection 119

On the defensive side, research efforts are increasingly focused on countering these 120

threats. The growing sophistication of LLM-generated phishing emails presents challenges 121

for traditional phishing detection systems, many of which are no longer able to reliably 122

identify such attacks. This issue has thus become a focal point in AI-driven cybersecurity 123

research, which is particularly evident in the following two leading approaches. 124

[30] employed LLMs to rephrase phishing emails in order to augment existing phish- 125

ing datasets, with the goal of improving the ability of detection systems to identify auto- 126

matically generated phishing content. Their findings suggest that the detection of LLM- 127

generated phishing emails often relies on different features and keywords than those used 128

to identify traditional phishing emails. 129



Version October 20, 2025 submitted to Electronics 4 of 32

LLM-generated phishing emails were also used in the approach of [31] to fine-tune 130

various AI models, including BERT-, T5- and GPT-based architectures. Their results demon- 131

strated a significant improvement in phishing detection performance across both human- 132

and LLM-generated messages, compared to the baseline models. 133

2.4. LLM Generated Phishing Emails 134

Several studies have highlighted that generative AI can be leveraged to create highly 135

convincing phishing emails, significantly reducing the human and financial resources 136

typically required for the creation of them [30–35]. This development is driven in part by 137

the increasing ability of LLMs to maintain syntactic and grammatical integrity while they 138

also embed cultural knowledge into artificially generated messages [36]. Moreover, with 139

the capacity to generate multimedia elements such as images and audio, GAI can enhance 140

phishing emails by adding elements that further support social engineering attacks [32]. 141

The collection of personal data for targeting specific individuals can also be facilitated 142

through AI-based tools [35]. 143

In [31], Bethany et al. evaluated the effectiveness of GPT-4-generated phishing emails 144

and confirmed their persuasive power in controlled studies. A related study, revealed that 145

while human-crafted phishing emails still demonstrated a higher success rate among test 146

subjects, they were also more frequently flagged as spam compared to those generated by 147

GPT-3 models.[33] Targeted phishing attacks—commonly known as spear phishing—can 148

also be rapidly and extensively generated by low experienced actors using GAI, as demon- 149

strated in [35] experiments with a LLaMA-based model. 150

2.5. Anti-Phishing Education 151

Anti-Phishing education seeks to train end-users to correctly identify phishing emails 152

they receive in real life and react appropriately. This education is an important first step 153

in cybersecurity as user interaction with emails and other forms of social engineering is 154

often the easiest means for cyberattackers to gain access to privileged information and 155

services [37]. Part of the ease with which attackers can leverage emails is due to the high 156

number of emails that users receive as a part of their daily work, which leads to a limited 157

amount of attention being placed on each email [38]. Additionally, phishing emails are 158

relatively rare to receive as many filtering and spam detection methods prevent them from 159

being sent to users’ inboxes. For this reason, many users are relatively inexperienced with 160

phishing emails and may incorrectly identify them [39]. Despite the commonality of cyber- 161

security education and training in many workplaces, social engineering including phishing 162

emails remains a common method of attack with a significant impact on security [40]. 163

Part of the challenge of anti-phishing education is defining the qualities of a good 164

education platform and determining how to evaluate both the platform and the ability of 165

users to detect emails in the real world. In their survey, Jampen et al. note the importance of 166

anti-phishing education platforms that can equitably serve large and diverse populations in 167

an inclusive manner [37]. This review compared ’user-specific properties and their impact 168

on susceptibility to phishing attacks’ to identify key features of users such as age, gender, 169

email experience, confidence, and distrust. This is crucial as cybersecurity preparedness is 170

only as effective as its weakest link, meaning anti-phishing education platforms that only 171

work for some populations are insufficient to appropriately address the dangers associated 172

with phishing emails [41]. It is important for anti-phishing training platforms to serve 173

populations as they vary across these features to ensure that the general population is safe 174

and secure from attacks using phishing emails [42]. 175

Another important area of research uses laboratory and on-line experiments with 176

human participants engaged in a simulation of anti-phishing training to compare different 177
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approaches. This has the benefit of allowing for more theoretically justified comparisons, 178

since traditional real-world anti-phishing education has high costs associated with it, 179

making more direct comparisons difficult [40]. Some results within this area of research 180

indicate that more detailed feedback, rather than only correct or incorrect information, 181

significantly improves post-training accuracy in categorizing emails as either phishing or 182

ham [43]. Additional studies indicate that personalizing LLM-generated detailed feedback 183

to the individual user through prompt engineering can further improve the educational 184

outcomes of these platforms [4,44]. However, these previous approaches do not involve 185

the training or fine-tuning of more domain-specific models, and rely on off-the-shelf black 186

box models using API calls to generate responses. 187

3. Dataset 188

3.1. Original Dataset 189

The experimental methods used to gather the dataset used for analysis in this work 190

are described in [4] and made available on OSF by the original authors1. 417 participants 191

made 60 total judgments about whether emails they were shown were safe or dangerous, 192

with 8 different experiment conditions that varied the method of generating emails and 193

the specifics of the LLM teacher prompting for educational feedback. These emails were 194

gathered from a dataset of 1461 emails, with a variety of methods used to create these 195

emails. In each of the four conditions we examine used educational example emails that 196

were generated by a GPT-4 LLM model. While the experimentation methods contained 197

8 different conditions, we are interested only in the four conditions that involved conver- 198

sations between users and the GPT-4.1 LLM chatbot. In each of these experiments, the 199

participants were given feedback on the accuracy of their categorization from an LLM that 200

they could also converse with. 201

Between these four conditions, the only difference was the presentation of emails 202

to participants and the prompting of the LLM model for feedback. In the ‘base’ first 203

condition, emails were selected randomly, and the LLM model was prompted to provide 204

feedback based on the information in the email and the decision of the student. In the 205

second condition, emails were selected by an IBL cognitive model in an attempt to give 206

more challenging emails to the student, based on the past decisions they made. The third 207

condition selected emails randomly but included information from the IBL cognitive model 208

in the prompt to the LLM; specifically, this information was a prediction of which features of 209

an email the current student may struggle with. Finally, the fourth condition combined the 210

two previous ones, using the IBL cognitive model for both email selection and prompting. 211

In the original dataset, there are three sets of LLM embeddings of each email shown to 212

participants using OpenAI API to access 3 embedding models (’text-embedding-3-large’, 213

’text-embedding-3-small’, and ’text-embedding-ada-002’) [45]. These embeddings were 214

used alongside a cognitive model of human learning and decision making called Instance 215

Based Learning [46–48] to predict the training progress of users. However, the original 216

paper [4] did not directly analyze the conversations between end users and the LLM 217

chatbots, and did not create a database of chatbot conversation embeddings. 218

3.2. Proposed Dataset 219

In this work we introduce an embedding dictionary 2 of these messages and evaluate 220

the usefulness of this embedding dictionary in different use cases. We also include in the 221

same dataset an embedding dictionary of the open response replies that students gave at 222

1 https://osf.io/wbg3r/
2 https://osf.io/642zc/

https://osf.io/wbg3r/
https://osf.io/642zc/
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the end of the experiment to answer the question of how they determined if emails were 223

safe or dangerous. In the majority of our analysis we combine the four conditions that 224

included conversations with chatbots because the previously mentioned differences do not 225

impact conversations between participants and the LLM chatbot. 226

One major limitation to this previous dataset is the exclusive use of closed source 227

models. While the embeddings themselves were included, the closed source nature of 228

the three embedded models used in [4] limits the reproducibility of the work and the 229

accessibility to other researchers. In this work we employ the same three closed source 230

models as in the original work as well as seven new open source models (qwen3-embedding- 231

0.6B3 [49], qwen3-embedding-4B 4 [49], qwen3-embedding-8B 5 [49], all-MiniLM-L6-v2 6, 232

bge-large-en-v1.5 7 [50], embeddinggemma-300m 8 [51], and granite-embedding-small- 233

english-r29 [52]). For all models that did not directly output embeddings, mean pooling 234

was used to extract embeddings [53]. There were 3846 messages sent between chatbots 235

and 146 different users during the anti-phishing training, resulting in 38460 message 236

embeddings in our dataset. Additionally, we provide embeddings for the seven new open 237

source models of the emails in the original dataset resulting in 5856 new email embeddings. 238

Our conversation analysis presented in the following section begins by a comparison 239

of the ten embedding models contained in our proposed dataset along a single metric. 240

After this, we perform a series of regressions that compare correlations of different metrics 241

of performance with the cosine similarity between the embeddings of messages and emails. 242

Finally, we perform a mediation analysis to give more strength to our conclusions and 243

recommendations. After this analysis we proceed to the Results and Discussion sections. 244

4. Conversation Analysis 245

In this section we demonstrate the usefulness of the presented dataset of embeddings 246

between users and the teacher LLM in this anti-phishing education context. We begin by 247

comparing the cosine similarity of the embeddings of messages sent by students and the 248

LLM teacher with the emails that the student was viewing when the message was sent. 249

This is an exploratory analysis that serves to examine whether cosine similarity is correlated 250

with three different student performance metrics. An important aspect of this analysis is 251

that it is purely correlational, meaning that we cannot determine causal relationships or the 252

direction of correlational relationships. Our goal with this analysis is to explore potential 253

methods of improving LLM education that can be further explored in future research. Code 254

to generate all figures and statistical analysis in this section is included online10. 255

4.1. Embedding Model Comparison 256

Before presenting our analysis of the correlations between cosine similarity and dif- 257

ferent attributes of student performance and demographics, we first seek to motivate our 258

choice of cosine similarity as a metric. There are several more simple metrics that could be 259

calculated between emails and messages without the need for embedding models, raising 260

the question of the value of our proposed dataset. For instance, metrics of the lexical 261

overlap between emails and messages such as the Jaccard [54], the proportion of common 262

words between the message and the email, and the Rouge [55], a count of how many of the 263

3 https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
4 https://huggingface.co/Qwen/Qwen3-Embedding-4B
5 https://huggingface.co/Qwen/Qwen3-Embedding-8B
6 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
7 https://huggingface.co/BAAI/bge-large-en-v1.5
8 https://huggingface.co/google/embeddinggemma-300m
9 https://huggingface.co/ibm-granite/granite-embedding-small-english-r2

10 https://github.com/TailiaReganMalloy/PhishingConversations

https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
https://huggingface.co/Qwen/Qwen3-Embedding-4B
https://huggingface.co/Qwen/Qwen3-Embedding-8B
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/google/embeddinggemma-300m
https://huggingface.co/ibm-granite/granite-embedding-small-english-r2
https://github.com/TailiaReganMalloy/PhishingConversations
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Figure 1. Top: A comparison of the correlation between three learning metrics and the cosine
similarity of embeddings of messages sent by both teachers and students, and embeddings of email
educational examples. This demonstrates significant correlation in the majority of models, and a
general trend of increasing correlation with increasing embedding size. Bottom Left: The correlation
between message length and the three learning metrics, demonstrating insignificant correlation.
Bottom Middle: The correlation between the three learning metrics and the proportion of common
words between emails and messages, also demonstrating insignificant correlation. Bottom Right:
The correlation between the three learning metrics and the number of shared n-grams (2,3,4, or 5)
between emails and messages, additionally demonstrating no significant correlation.

same short phrases (n-grams) appear in both texts. Additionally it is important to control 264

for attributes such as the message length [56], since longer messages may have on average 265

higher similarities to emails since they are of a similar length. 266

If the correlational analysis we present in this section could be equally related to these 267

alternative metrics, it would demonstrate an issue with our proposition of the usefulness 268

of the dataset we present. To address this, we begin by comparing the correlation of three 269

metrics of student performance, their correct categorization, their confidence, and their 270

reaction time. In Figure 1 we compare the correlation between three learning metrics and 271

the cosine similarity of embeddings of messages sent as feedback and the emails students 272

are observing. We report this average for 10 different embedding models. Additionally, we 273

compare these correlations to the alternative metrics previously mentioned. 274

To determine which embedding model is ideal for our correlation analysis, we compare 275

each of these embedding models in terms of the average correlation of our three metrics, 276

correct categorization, confidence, and reaction time. This is shown on the top row of 277

Figure 1 which has on the x axis the embedding size of the models under comparison, and 278

on the y-axis the average correlation (Pearson R2) of those three metrics. Overall we see a 279

significant trend that models with larger embedding sizes are typically better correlated 280

to the learning metrics we are interested in. This result is promising for our analysis, as 281

comparing the similarity of larger embeddings often captures semantic similarity better 282

than smaller embeddings [57]. The highest correlation to learning metrics is observed when 283

comparing the cosine similarity of emails and messages generated by the Open AI Large 3 284

model which has an embedding size of 3048. For this reason we will compare the cosine 285

similarity as measured using embeddings formed by the Open AI Large 3 model in all 286

following analyses. 287
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4.2. Regression Analyses 288

In all regression analyses in this section, we first bin the message embedding cosine 289

similarities to email embeddings to the nearest 0.01, grouped based on the sender. Addi- 290

tionally, all message cosine similarity values on the x-axis are normalized to between 0-1 291

grouped by the message sender. This is the source of the values on the x-axis of each plot. 292

Then, we plot as a scatterplot the averages for the metric on the y-axis of all of the binned 293

messages. For example, in the left column of Figure 2, the leftmost blue point represents the 294

average correct categorization for all trials where messages were sent that had embeddings 295

with a cosine similarity to email embeddings of 0.00. The significance of these regressions 296

is based on Pearson correlation coefficients with the R2 and p values shown at the top of 297

each subplot. Finally, each variable comparison (e.g correct categorization and message 298

cosine similarity to email) has a T-Test run to compare the correlation in a different manner 299

that does not use binned message cosine similarity values. 300

The first of these metrics is the percent of correct categorization by the student, the 301

second is their confidence in the categorization, and the last is the reaction time of the 302

student. Ideally, the teacher LLM would be providing feedback that is easy to quickly 303

understand and leads to high confidence and correct categorizations. These three metrics 304

are compared to the cosine similarity of emails with respect to both student and teacher 305

message embeddings as shown in Figure 2. 306

4.3. Categorization Accuracy 307

The relationship between message cosine similarity and user categorization accuracy is 308

shown on the middle column of Figure 2. The analysis of student accuracy in categorization 309

revealed that both the human student’s and teacher LLM message cosine similarities to 310

emails were positively associated with the likelihood of a correct categorization. The 311

human student’s message-email cosine similarity showed a moderate positive correlation 312

with correct categorization, that is not robust when evaluated with ANOVA (Pearson 313

Correlation: R2 = 0.243, p = 0.0197, ANOVA: F(22, 464) = 0.841, p = 0.674, η2
p = 314

0.038). The teacher LLM’s message similarity exhibited a strong positive association with 315

correct outcomes, a relationship further corroborated by statistically significant results from 316

ANOVA, though the effect size was small (Pearson Correlation R2 = 0.578, p = 6.66x10−6, 317

ANOVA: F(25, 1720) = 1.648, p = 0.0231, η2
p = 0.023) These results indicate that student 318

performance was higher when the messages sent by either them or their teacher were more 319

closely related to the email that was being observed by the student. Furthermore, the results 320

suggest that the LLM’s message similarity is a stronger predictor of correct categorization 321

than the human student’s similarity, though the ANOVA effect sizes remain modest. 322

4.4. Categorization Confidence 323

The relationship between message cosine similarity and user confidence in their 324

categorization is shown in the middle column of Figure 2. The analysis of students’ 325

categorization confidence showed a divergent trend for the student and the teacher in 326

relation to message similarity. This is a surprising result, since the previous analysis 327

of categorization accuracy indicated that both student and teacher messages that were 328

more related to the current email were associated with better performance. However, 329

confidence is a separate dimension from accuracy as low confidence correct answers and 330

high confidence incorrect answers can change the relationship between message embedding 331

similarities and this metric of student performance. The cosine similarity between a 332

student’s message and the email content was negatively associated with the student’s 333

confidence rating (Pearson Correlation: R2 = 0.269, p = 0.0133, ANOVA: F(22, 464) = 334

1.539, p = 0.0569, η2
p = 0.068). 335
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Figure 2. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Left: A correlation analysis between message cosine similarity to
emails with the probability of correct categorization, showing significant correlation for both types
of messages. Middle: A correlation analysis of message cosine similarity to emails and student
confidence in their categorization, indicating a significant positive correlation for teacher messages
and a significant negative correlation for student messages. Right: A correlation analysis between
student reaction time and message cosine similarity to emails, indicating no significance for messages
sent by students but a significant, but moderate, positive trend for messages sent by teachers.

In other words, students who more closely echoed the email’s content in their own 336

messages tended to report lower confidence in their categorization decisions, but this 337

pattern was not consistently supported across groups, as indicated by ANOVA score. 338

By contrast, the teacher LLM’s message similarity showed a positive correlation with 339

student confidence which was also statistically significant in ANOVA (Pearson Correlation: 340

R2 = 0.216, p = 0.0169, ANOVA: F(25, 1720) = 1.652, p = 0.0225, η2
p = 0.023). This 341

indicates that when the teacher’s response closely matched the email content, students 342

tended to feel slightly more confident about their categorizations, although the effect size 343

was small. 344

4.5. Categorization Reaction Time 345

The relationship between message cosine similarity and reaction time is shown on 346

the right hand side of Figure 2. The relationship between reaction time and message 347

similarity differed markedly by role. There was no significant association between the 348

human student’s message similarity and their reaction time, not with Pearson Correlation 349

nor with ANOVA (Pearson Correlation: R2 = 0.019, p = 0.537, ANOVA: F(22, 464) = 1.155, 350

p = 0.284, η2
p = 0.052), indicating that how closely a student’s message mirrored the 351

email content did not measurably influence how quickly they responded. In contrast, the 352

teacher LLM’s message similarity was significantly associated with longer reaction times in 353

regard to Pearson Correlation, but ANOVA also showed just a small effect size (Pearson 354

Correlation: R2 = 0.250, p = 0.0093, ANOVA: F(25, 1720) = 0.882, p = 0.632, η2
p = 0.013). 355

Higher cosine similarity between the teacher’s message and the email corresponded to 356

increased time taken by students to complete the categorization task, even if the effect was 357

not conventionally significant with ANOVA, it shows a trend. In practical terms, when the 358

teacher’s response closely resembled the email text, students tended to require more time 359

to finalize their categorization, whereas the student’s own content overlap had little to no 360

observable effect on timing. These results are presented as correlational patterns (from the 361

regression analysis) and do not imply causation, but they highlight that teacher-provided 362

content overlap was linked to slower student responses while student-provided overlap 363

was not. 364
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Figure 3. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Left: A correlation analysis between message cosine similarity to
emails with user initial performance, showing no significant correlation for both types of messages.
Middle: A correlation analysis of message cosine similarity to emails and student categorization
improvement, indicating a significant negative correlation for student messages and a no significant
correlation for teacher messages. Right: A correlation analysis between student final performance
and message cosine similarity to emails, indicating no significance for messages sent by teachers but
a significant negative trend for messages sent by students.

4.6. Student Learning Outcomes 365

The next analysis that we perform is related to the learning outcomes of the students, 366

as well as their responses to the post-experiment questionnaire that asked them questions 367

about whether they thought the emails that they observed were written by humans or an 368

LLM. Note that in the three conditions we examine here, all of the emails were written and 369

stylized with HTML and CSS code by a GPT-4.1 LLM, meaning that the correct perception 370

of emails as AI generated is 100 percent. The open response question that is analyzed on 371

the right column of figure 3 is the student’s response to the question of how they made 372

their decisions about whether an email was safe or dangerous. 373

4.6.1. User Initial Performance 374

The left column of figure 3 compares the average message cosine similarity to the 375

current email being observed by the student with the initial performance of the student. 376

Here we see that neither the messages sent by human students nor the teacher LLM 377

are strongly correlated with user initial performance. There is a slight positive trend 378

for both regressions where higher cosine similarity with student messages is associated 379

with better initial performance (Pearson Correlation: R2 = 0.024, p = 0.476, ANOVA: 380

F(22, 464) = 0.692, p = 0.849, η2
p = 0.032), and similarly for teacher LLM similarity 381

(Pearson Correlation R2 = 0.075, p = 0.176, ANOVA: F(25, 1720) = 0.863, p = 0.659, 382

η2
p = 0.012). However, both of these have low correlations with high p-values and the 383

ANOVA results show no significance and small effect sizes. This indicates that there is no 384

relationship between the conversations of human students and LLM teachers and initial 385

performance, at least when measured by message cosine similarity to emails. This makes 386

intuitive sense as the messages between participants and students begin after this initial 387

pre-training phase when there is no feedback yet. 388

4.6.2. User Training Outcomes 389

The middle column of figure 3 compares the user improvement to our measure of 390

message cosine similarity to emails. Here, we can see that only the messages sent by human 391

students have cosine similarities to emails that are correlated with user improvement, 392

supported by Pearson Correlation. However, interestingly this is actually a negative trend, 393

meaning that higher human message cosine similarity to emails results in lower average 394

user improvement (Pearson Correlation: R2 = 0.370, p = 0.002 ANOVA: F(22, 464) = 1.557, 395
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Figure 4. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Left: A correlation analysis between message cosine similarity to
emails with user initial performance, showing no significant correlation for both types of messages.
Middle: A correlation analysis of message cosine similarity to emails and student categorization
improvement, indicating a significant negative correlation for student messages and a no significant
correlation for teacher messages. Right: A correlation analysis between student final performance
and message cosine similarity to emails, indicating no significance for messages sent by teachers but
a significant negative trend for messages sent by students.

p = 0.0521, η2
p = 0.069)), though the ANOVA result is not statistically significant, indicating 396

that the effect is not robust across groups. Meanwhile, this same comparison of teacher 397

LLM messages shows no correlation at all (Pearson Correlation: R2 = 0.000, p = 0.945 398

ANOVA: F(25, 1720) = 1.014, p = 0.444, η2
p = 0.015). This goes against the intuition 399

that conversations that focus on the content of emails are beneficial to student learning 400

outcomes that were established in the previous set of results. However, we believe they are 401

not completely contradictory as a human student sending messages about specific parts of 402

emails, even including specific passages of the email, may indicate a high level of confusion 403

about the categorization. 404

4.6.3. User Final Performance 405

The right column of figure 3 compares the user improvement to the message cosine 406

similarity to emails. Similarly to the comparison to user improvement, here we see no 407

correlation with the LLM teacher messages and user final performance (Pearson Correlation 408

R2 = 0.043, p = 0.311 ANOVA: F(25, 1720) = 1.189, p = 0.237, η2
p = 0.017), while the hu- 409

man emails have a similar negative correlation (Pearson Correlation R2 = 0.308, p = 0.006 410

ANOVA: F(22, 464) = 1.705, p = 0.0247, η2
p = 0.075). Both correlation measures support 411

these outcomes. This supports the conclusions of the previous comparison of regressions 412

which suggested that participants who frequently make comments that reference specific 413

parts of the emails they are shown may have worse training outcomes. Taking these results 414

in mind while observing the results of regressions shown in Figure 2 suggests that LLM 415

models should seek to make their feedback specific and reference the emails that are being 416

shown to participants, but steer human participants away from focusing too much on the 417

specifics of the email in question in their own messages. 418

4.7. Student Quiz Responses 419

The next set of cosine similarity analyses that we perform using the cosine similarity of 420

messages and emails compares the performance of students on the quizzes they completed 421

before and after training. 422

4.7.1. Student Pre-Experiment Quiz 423

The left column of Figure 4 compares the pre-experiment quiz score of students 424

to the message cosine similarity between the emails and the messages sent by human 425
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students and LLM teachers. Here we see no correlation between the messages sent by 426

either students (Pearson Correlation: R2 = 0.047, p = 0.32, ANOVA: F(22, 464) = 1.195, 427

p = 0.247, η2
p = 0.054) or teachers (Pearson Correlation: R2 = 0.002, p = 0.81, ANOVA: 428

F(25, 1720) = 1.261, p = 0.174, η2
p = 0.018). As with the user initial performance, this 429

makes intuitive sense since the base level of student ability shouldn’t have a direct impact 430

on the way that students and teachers communicate relative to the email that the student 431

is observing. One potential difference between these communications that is not directly 432

measured in this analysis is the information within the email itself that may be focused on 433

more or less in conversations depending on student initial ability. 434

4.7.2. Student Post-Experiment Quiz 435

The middle column of Figure 4 compares user participant perception of emails as 436

being AI generated and the similarity of messages sent between human students and 437

LLM teachers and the current email being observed. Here we see no correlation for 438

messages sent by human students (Pearson Correlation: R2 = 0.005, p = 0.75, ANOVA: 439

F(22, 464) = 1.348, p = 0.135, η2
p = 0.060) or for messages sent by the LLM teacher (Pearson 440

Correlation R2 = 0.117, p = 0.869, ANOVA: F(25, 1720) = 0.702, p = 0.86, η2
p = 0.010). 441

There is a slight negative trend here observable as pattern, where a lower perception of 442

emails as being AI generated is slightly associated with a lower LLM teacher message 443

cosine similarity. This is an interesting trend as the true correct percentage of emails that 444

are AI generated is 100%, however this trend is statistically not significant. 445

4.7.3. Student Post-Experiment Open Response 446

The right column of Figure 4 compares the similarity between the current email being 447

observed by a student and the open response messages that they gave to the question of 448

how they made their decisions of whether emails were safe or dangerous. Here we see the 449

strongest and most significant trend over all of the embedding similarity regressions we 450

have performed. There is a strong positive trend for human student messages with both 451

correlation measures (Pearson Correlation: R2 = 0.655, p < 1e − 3, ANOVA: F(22, 464) = 452

5.624, p = 4.86e − 14, η2
p = 0.211) and LLM teacher messages (Pearson Correlation R2 = 453

0.595, p < 1e − 3, ANOVA: F(25, 1720) = 1.377, p = 0.102, η2
p = 0.020) where the more 454

similar a message is to the email that the human student is observing, the more similar that 455

message is to the open response question at the end of the experiment. For the LLM teacher 456

messages, this effect shows less robust according to ANOVA. 457

4.8. User Demographics 458

The final set of cosine similarity regressions we perform compares the similarity of 459

messages sent by human students and LLM teachers and the different demographics 460

measurements that were included in the original dataset. 461

4.8.1. Age 462

Comparing the age of participants and their conversations demonstrates a significant 463

correlation to the messages sent by human students (Pearson Correlation: R2 = 0.315, p = 464

0.005, ANOVA: F(22, 464) = 1.395, p = 0.11, η2
p = 0.062), and an insignificant but present 465

trend for the messages sent by the Teacher LLM (Pearson Correlation: R2 = 0.115, p = 466

0.0904, ANOVA: F(25, 1720) = 1.122, p = 0.307, η2
p = 0.016). Both of these correlations 467

trend negative, indicating that older participants have less correlation in the messages 468

they send and the emails they are currently observing. ANOVA confirms a small-to- 469

moderate effect size of this for the student-message similarity over groups, while being not 470

conventionally significant, since it can’t be consistently observed across all groups. 471
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Figure 5. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Top Left: A correlation analysis between message cosine similarity
to emails with user age, showing a significant negative correlation for both types of messages. Top
Middle: A correlation analysis of message cosine similarity to emails and student gender, indicating
no significant correlation for student messages and a no significant correlation for teacher messages.
Top Right: A correlation analysis between student number of years of education and message co-
sine similarity to emails, indicating no significance for messages sent by teachers but a significant
positive trend for messages sent by students. Bottom Left: A correlation analysis between message
cosine similarity to emails and phishing experience, as measured by a pre-experiment questionnaire,
indicating a insignificant positive trend for both types of messages. Bottom Middle: A correlation
analysis of experience with chatbots, as measured by a pre-experiment questionnaire, and message
cosine similarity to emails, indicating no significant trend for either type of message. Bottom Right:
A correlation analysis comparing message cosine similarity to emails and cognitive model activity,
as measured by the condition of the experiment, indicating a significant positive trend for teacher
messages and no trend for student messages.

4.8.2. Gender 472

To perform a regression in the same format as the previous analyses, we arbitrarily 473

assigned female to a value of 1 and male to a value of 0 (there were 0 non-binary students 474

in this subset of the original dataset). This allowed for an analysis, shown in the top- 475

middle of Figure 5, which shows no correlation between the gender number of students 476

and the messages sent by either human students (Pearson Correlation: R2 = 0.058, p = 477

0.27, ANOVA: F(22, 464) = 1.110, p = 0.331, η2
p = 0.050) or by teacher LLMs (Pearson 478

Correlation: R2 = 0.025, p − 0.452), ANOVA: F(25, 1720) = 0.880, p = 0.635, η2
p = 0.013). 479

This indicates that male and female students sent similar messages, and that the LLM 480

replied with similar messages. While these results are insignificant, they do suggest that 481

accounting for gender differences in how LLM teaching models give feedback to students 482

is less of a priority compared to other subpopulations of students. 483

4.8.3. Education 484

Comparing the similarity of embeddings of messages sent between human students 485

and LLM teachers demonstrates a correlation with the years of education that the student 486

has received for messages sent by the human student (Pearson Correlation: R2 = 0.33, p = 487

0.003), ANOVA: F(22, 464) = 0.991, p = 0.474, η2
p = 0.045) but not for the messages sent 488
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by the teacher LLM (R2 = 0.004, p = 0.756, ANOVA: F(25, 1720) = 0.984, p = 0.486, 489

η2
p = 0.014). The positive trend between the number of years of education and the human 490

student message cosine similarity to emails indicates that students with higher education 491

send messages that more closely match the information contained in the emails they are 492

observing. This effect is continuous but not significant with ANOVA, so it is more a trend 493

showing than a stepwise jump between education categories. As mentioned with regards to 494

age, education level is another important group to account for when improving educational 495

outcomes, meaning education level could be a target for future improvement in LLM 496

teacher feedback. 497

4.8.4. Phishing Experience 498

The next analysis we performed compared the level of phishing experience of human 499

students, as measured by the response that students gave to the number of times that 500

they have received a phishing email. We again mapped this discrete categorization onto a 501

value to perform a regression. When we compare this measure of experience to the cosine 502

similarity of messages sent and emails, we see no significant correlation in either messages 503

sent by human students (Pearson Correlation: R2 = 0.105, p = 0.131, ANOVA: F(22, 464) = 504

0.923, p = 0.565, η2
p = 0.042) or the teacher LLM (Pearson Correlation: R2 = 0.118, 0.085, 505

ANOVA: F(25, 1720) = 0.912, p = 0.589, η2
p = 0.013). While insignificant, both of these 506

regressions demonstrate a slightly positive trend suggesting that more experienced users 507

may be more likely to send messages related to the emails they are observing. 508

4.8.5. Chatbot Experience 509

Similar to phishing experience, chatbot experience was determined by mapping a 510

multiple choice question onto values to allow for a regression. Interestingly, we see no 511

correlation between email embeddings and the embeddings of messages sent by either 512

human students (Pearson Correlation: R2 = 0.006, p = 0.734, ANOVA: F(22, 464) = 1.332, 513

p = 0.144, η2
p = 0.059) or teacher LLMs (Pearson Correlation: R0.035, p = 0.363, ANOVA: 514

F(25, 1720) = 1.016, p = 0.442, η2
p = 0.015), with both regressions displaying near 0 trends 515

and high p-values. This indicates that the conversations during training were equally likely 516

to be related to the emails that were being observed by participants whether the student 517

had little or a high amount of experience with LLM chatbots. Typically we would assume 518

that participants would converse differently if they had more experience, but here it is 519

important to note we are comparing one specific aspect of the messages, whether they are 520

related to the email being observed, meaning other comparisons of these conversations 521

may display a difference across chatbot experience level. 522

4.8.6. Cognitive Model Activity 523

The final regression that we perform looked at the ’cognitive model activity’, which 524

is a stand-in for the condition of the experiment. While not directly a demographic, this 525

did compare the messages sent by humans and the LLM based on the condition of the 526

experiment. This metric was determined based on whether the IBL cognitive model used in 527

the experiment performed no role (0), either determined the emails to send to participants 528

or was used to prompt the LLM (1), or if the IBL model performed both of these tasks (2). 529

Comparing this measure of cognitive model activity which differed across experiment 530

conditions demonstrates a positive and significant trend for messages sent by the LLM 531

teacher, though the ANOVA shows no significant group-level effect (Pearson Correlation: 532

R2 = 0.196, p = 0.023, ANOVA: F(25, 1720) = 1.159, p = 0.267, η2
p = 0.017). This indi- 533

cates that LLM messages are more likely to align with emails when the cognitive model is 534

more active, even if differences across groups are minimal. For human student messages, 535

the Pearson correlation shows no significant relationship, but ANOVA indicates signifi- 536



Version October 20, 2025 submitted to Electronics 15 of 32

cant differences across conditions (Pearson Correlation: R2 = 0.004, p = 0.769, ANOVA: 537

F(22, 464) = 1.725, p = 0.0222, η2
p = 0.076). This suggests that while overall message 538

similarity is not linearly correlated with cognitive model activity, there are measurable 539

differences in how students respond depending on the experimental condition. 540

Table 1. Significant Mediation Effects on Correct Categorization

Context Ind Coef. SE p CI 2.5% CI 97.5% Sig

(Student+Teacher) ∼
Age -0.00586 0.00238 0.012 -0.0109 -0.0019 Yes
(Student+Teacher) ∼
AI Gen Perception 0.00395 0.00220 0.044 0.000156 0.00834 Yes
(Student+Teacher) ∼
Response Msg Similarity 0.00884 0.00347 0.004 0.00285 0.0157 Yes
(Teacher) ∼
Education Years -0.00582 0.00292 0.020 -0.0131 -0.00137 Yes
(Teacher) ∼
Response Msg Similarity 0.00922 0.00296 0.000 0.00459 0.0165 Yes

4.9. Mediation Analysis 541

In addition to regression analyses, we are interested in the impact of each of the 542

demographic variables (Figures 3-4) on measures of student performance (Figure 1-2). For 543

brevity, we focus our analysis on demographic measure impact on correct categorization. 544

Mediation analysis can be used to test whether the impact of a variable X on Y is at lest par- 545

tially explained by the effects of an intermediate variable M, called the ’mediator’ [58]. This 546

analysis is commonly used in social psychology [59], human-computer interaction [60], and 547

in LLM research such as investigations of potential gender biases in LLMs [61]. This analy- 548

sis was performed using the Pingouin python library package [62]. All of the significant 549

mediation effects reported in this section are summarized in Table 1. 550

4.9.1. Mediation of Student and Teacher Messages 551

Our first set of mediation analyses compared whether the impact of demographic 552

variables on student correct categorization could be mediated by the cosine similar- 553

ity of student or teacher message embeddings and email embeddings. Out of all of 554

the demographic variables, three significant mediation effects were observed. The 555

first was Age, which had a significant total effect (coe f = 0.046, SE = 0.0211, p = 556

0.0299, CI95%[0.00448, 0.0874]), a significant direct effect (coe f = 0.0518, SE = 0.0211, p = 557

0.0141, CI95%[0.0104, 0.0932]), and a significant indirect effect (coe f = −0.00586, SE = 558

0.00238, p = 0.012, CI95%[−0.0109,−0.0019]). 559

The next significant mediation effect was of the effect of AI generation perception on 560

correct categorization. There was a significant total effect (coe f = −0.12, SE = 0.021, p = 561

1.293e − 08, CI95%[−0.161,−0.0788]), direct effect (coe f = −0.124, SE = 0.0209, p = 562

3.741e− 09, CI95%[−0.165,−0.0829]) and indirect effect (coe f = −0.00395, SE = 0.0022, p = 563

0.044, CI95%[0.000156, 0.00834]). 564

The final significant mediation effect when using both student and teacher message 565

similarities as a mediator is Response Message Similarity which had a significant total effect 566

(coe f = 0.235, SE = 0.0206, p = 2.062e − 29, CI95%[0.195, 0.275]), direct effect (coe f = 567

0.226, SE = 0.0208, p = 6.212e − 27, CI95%[0.185, 0.267]), and indirect effect (coe f = 568

0.00884, SE = 0.00347, p = 004, CI95%[0.00285, 0.0157]) 569
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4.9.2. Mediation of Teacher Messages Only 570

The first of the two significant mediation effects with respect to teacher message cosine 571

similarity to emails is on Education Years which had a significant total effect (coe f = 572

−0.109, SE = 0.0238, p = 5.421e − 06, CI95%[−0.155,−0.0619]), direct effect (coe f = 573

−0.103, SE = 0.0237, p = 1.557e − 05, CI95%[−0.149,−0.0562]), and indirect effect (coe f = 574

−0.00582, SE = 0.00292, p = 0.02, CI95%[−0.0131,−0.00137]). 575

The second significant effect of teacher messages is that of Response Message Sim- 576

ilarity which had a significant total effect (coe f = 0.217, SE = 0.0234, p = 4.474e − 577

20, CI95%[0.171, 0.263]), direct effect (coe f = 0.208, SE = 0.0234, p = 1.665e − 18 578

CI95%[0.162, 0.254]), and indirect effect (coe f = 0.00922, SE = 0.00296, p = 0, CI95% 579

[0.00459, 0.0165]). 580

5. Results 581

Before beginning our summary and interpretation of the above analysis, it is important 582

to reiterate the reason for our analysis and the meaning of statistical significance in the 583

context of correlational analysis. We initially sought to perform an exploratory analysis 584

to compare potential areas of improvement in LLM teacher feedback generation. This is a 585

broad question with many possible methods of improvement, necessitating the narrowing 586

down of potential methods. While these results point to possible methods of improvement, 587

they do not exclude the possibility that alternatives may also lead to improvements in LLM 588

teacher feedback. 589

Across the 30 regressions that we performed, 12 reached statistical significance and 6 590

of the others showed meaningful trends. We additionally performed 25 mediation analyses 591

which showed 5 significant mediation effects. Taken together, these results form a coherent 592

picture of how email embedding cosine similarity to embeddings of messages sent by 593

both students and teachers relates to student performance and learning. The following 594

analyses summarize and synthesize the results of our message-email similarity analysis 595

and make actionable recommendations for both real-world online training platforms and 596

future studies of human learning using natural language feedback provided by LLMs. 597

In categorization accuracy, both student and teacher message-email similarity were 598

positively correlated with student categorization accuracy. The similarity between the 599

student message and email with the emails showed a moderate effect that is not consistent 600

across categories, while this same metric for the LLM teacher messages showed a strong 601

effect that is also confirmed by ANOVA score, suggesting that the LLM teacher messages 602

that closely aligned with the observed email were most useful for guiding correct responses. 603

This makes intuitive sense since feedback for participants that references the email they 604

are currently observing would typically be more relevant than less email-related feedback. 605

While this analysis is correlational, it does demonstrate one area that future LLMs could be 606

trained to optimize, by encouraging or preferring responses that are more closely related to 607

the emails that students are currently categorizing. 608

Building on this, the confidence results gave important insights: students who echoed 609

the content of the emails more closely actually felt less confident, whereas higher teacher 610

message-email similarity increased confidence. This correlation indicates that a student 611

who is frequently making questions or comments that directly reference parts of the emails 612

in the training might indicate someone who needs more experience and varied feedback 613

to achieve higher improvement levels. Taken together, these findings indicate that while 614

alignment with the email improves accuracy, when it is the student providing the overlap, 615

it may signal uncertainty, whereas teacher-provided overlap reassures students. 616

For LLM-supported learning platforms, this finding suggests potential avenues for 617

development toward greater user engagement in the conversation with the LLM teacher 618
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during email categorization, which also extends the insights reported in [4,44]. Also, such 619

a level of guidance cannot be provided in traditional in-person training [11]. 620

With taking also reaction times into account, we found that teacher message-email 621

similarity was significantly associated with longer response times in terms of Pearson 622

Correlation, while student message cosine message-email similarity showed no significant 623

effect. The ANOVA results suggested that neither variable exerted a statistically significant 624

effect. While accuracy and confidence are clear objectives for improvement, which are 625

both increased with higher teacher message-email similarity, a preference for either higher 626

or lower reaction time is less obvious. Taking these results on reaction into account with 627

the previous correlation analysis may indicate that while teacher message-email similarity 628

may improve the important metrics of accuracy and confidence, that may come at the 629

cost of a longer time requirement for students. In some educational scenarios this may 630

be a trade-off, if student time is a significantly constrained resource. However, in other 631

settings the improvement on accuracy and confidence correlated with teacher message- 632

email similarity may be much more important, meaning the increased time requirement is 633

relatively irrelevant. 634

When we turn from immediate task performance to learning outcomes, the results 635

show a different pattern. Greater similarity between student message and the email text 636

was negatively associated with both learning improvement and final performance, while 637

teacher message-email similarity showed no significant relationship in either case. So high 638

student message-email similarity predicts weaker learning, suggesting that anti-phishing 639

training should encourage flexible strategies rather than focusing on specific examples. 640

Taken together with the results on confidence and accuracy, this set of findings indicates that 641

student message-email similarity is positively associated with immediate correctness but 642

negatively associated with learning gains and final outcomes, while teacher message-email 643

similarity is linked to immediate performance benefits without clear effects on longer-term 644

improvement. 645

Students who closely echo phishing emails may rely too heavily on surface features, 646

indicating that training should emphasize broader pattern recognition rather than simple 647

repetition. Overall, over-reliance on specific email features may hinder broader learning 648

and decision-making, highlighting the importance of teaching generalizable strategies 649

for identifying phishing attempts. This becomes particularly important in the context of 650

GAI-generated phishing emails, as these may be detected based on patterns beyond mere 651

textual features [31–33]. 652

The strongest effects we observed came in the post-experiment open responses, where 653

both student and teacher message-email similarity were strongly and positively related to 654

the strategies that students reported using. This is an interesting result as the open response 655

questions ask the student to reply on their general strategy, rather than a specific email they 656

observed. This indicates that it may be useful for LLM teachers to discuss the strategies 657

that students use to determine if an email is safe during their feedback conversations with 658

students. 659

Because these questions asked students to describe their general strategy rather than 660

respond to a specific email, this suggests that anti-phishing training could benefit from 661

emphasizing strategy development over rote memorization of individual examples [43], 662

building on what was previously outlined in this regard. GAI LLMs could support this by 663

providing strategy-focused feedback and offering personalized prompts when students 664

rely too heavily on surface cues, as well as guiding post-task reflection on the strategies 665

applied. Together, these approaches could help address a common challenge in phishing 666

defense: students’ tendency to over-rely on specific email features rather than developing 667

robust, transferable detection strategies. 668
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Our analysis of the LLM teacher and human student message-email similarity with 669

respect to student demographics revealed important implications for improving diversity, 670

equity, and inclusion in online training platforms. One of the most important aspects 671

of equality in education is effective progress for students of all ages. This is especially 672

important in anti-phishing education and the elderly as they are one of the most susceptible 673

subpopulations with regards to phishing attempts [63]. These results indicate that older age 674

groups may be less likely to have conversations about the specific emails they are observing 675

in anti-phishing training. Taking this into account when providing natural language 676

educational feedback could improve the learning outcomes of more aged individuals. 677

Finally, our analysis of mediation effects provided further support to the evidence 678

that the types of messages that are sent between students and teachers, as well as the 679

types of messages teachers send independently, can alter the impact of demographics on 680

student performance. This was identified by the five mediation analyses with significant 681

indirect effects, demonstrating that part of the impact of these demographics effects on 682

correct categorization can be explained in part by effects related to how students and 683

teachers communicate. This indicates that by improving the way that teacher LLMs, such 684

as by using the metrics we suggest in this section, there maybe a similar improvement in 685

the performance of students that reduces the biases related to specific subpopulations of 686

students. This is a major target for improving LLM teacher quality, as it can potentially 687

lead to more equitable outcomes in the application of LLM teachers, and reduce some of 688

the concern over their widespread adoption. 689

6. Discussion 690

In this work we present a dataset of embeddings of messages sent between LLM 691

teachers and human students in an online anti-phishing educational platform. The goal of 692

this dataset is to be applied onto improving the quality of LLM teacher educational feedback 693

in a way that can account for potential biases that exist within LLMs that raise concerns 694

regarding their widespread adoption. Our analysis revealed relationships between metrics 695

of educational outcomes and the semantic alignment of educational feedback discussions, 696

as measured by the cosine similarity of message embeddings and the educational email 697

embeddings. In general, we found that when the LLM teacher’s feedback closely mirrored 698

the content of the email under discussion, students performed better on the immediate 699

task. We additionally found some correlations between these educational outcomes and the 700

similarity of student messages to email examples, but overall the conclusions were more 701

mixed compared to the analysis of teacher messages. Additionally, our mediation analysis 702

provided further support that teacher message and email embedding similarity can serve 703

as a mediator for the effect of several important demographics on the impact of student 704

performance. 705

These results suggest that message-email similarity can be an important target for 706

testing methods in training, fine-tuning, and prompting without the requirement of running 707

additional tests with human subjects which can be costly, or relying on simulated LLM 708

students which can have issues transferring to real world student educational improvement. 709

Moreover, these results have applications outside of describing targets for testing methods 710

by detailing some of the most important subpopulations to focus on for improvement of 711

the quality of LLM teacher responses in the content of anti-phishing training. Specifically, 712

age, education, phishing experience and experience with AI chatbots were identified 713

as demographics in which certain subpopulations may be disproportionally negatively 714

impacted by lower quality teacher LLMs. Our mediation analysis, as well as ANOVA 715

and regression analyses, provided evidence that improving the quality of LLM teacher 716
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responses using the methods we suggest can have a positive impact on the educational 717

outcomes of these subpopulations. 718

Another possible approach to incorporate the lessons learned from this work into the 719

design of new LLM teaching models is to attempt to detect and address learner confusion 720

over phishing emails proactively. The negative correlation of student message similarity 721

with learning outcomes indicates that over-fixation on specific aspects of the email examples 722

can be a real-time signal that LLM teachers can use to adjust their feedback. Whether done 723

through chain of thought reasoning or other methods, leveraging the similarity of user 724

messages to their emails can give insight into their learning and indicate a way to improve 725

training by adjusting the teaching approach in response to these types of messages. In the 726

dataset we present, we noted a correlation between teacher and student message similarity 727

with respect to several metics, which indicates that LLM teachers are often similarly narrow- 728

focused as students. The degree of this specificity could be adjusted in response to student 729

message similarity to emails, and avoid merely mirroring the specificity that user messages 730

exhibit. 731

In addition to the significant positive correlations we report, there are also interesting 732

negative correlations that differ from expectations given the correlation of other demo- 733

graphics and educational metrics. Specifically, we found that students who frequently 734

send messages that are more closely related to the emails being observed actually had 735

worse overall performance and training improvement. This can be explained by several 736

different causes, such as less knowledgeable students more often choosing to ask questions 737

that make reference to specific aspects of the emails they are observing, rather than the 738

topic they are learning more broadly. This type of effect may allow for a chain of thought 739

reasoning LLM model to identify when students are sending messages of this type, and 740

adjust the method of providing educational feedback based on this insight. 741

By implementing these recommendations, anti-phishing and other types of online 742

training platforms that use LLMs can potentially produce more responsive educational 743

tools rather than one-size-fits-all chatbots that could disproportionally negatively impact 744

the educational quality of important subpopulations. However, there are limitations to 745

this work that raise important areas for future research. As mentioned, we performed 746

only regression and mediation analysis on the demographics and learning outcomes of the 747

dataset we had available, and our introduced embeddings of conversations. While this 748

allowed us to make useful recommendations for future LLM teaching models, it is a limited 749

view of the ways that LLM models can be improved. One useful area of future research that 750

could leverage this same dataset or collect new data would be to compare the prompting of 751

the LLMs and how they output educational feedback. LLM prompting was not a major 752

investigation of this research as we chose to create embeddings of messages themselves, 753

but a similar approach using LLM prompts could also be used to draw conclusions for 754

important targets of LLM teacher optimization. 755

Beyond the work we present here, there are many additional contexts that LLM 756

teaching feedback improvement can be applied to. Educational settings are one high-risk 757

application of LLMs, which requires significant research into improving response quality 758

and ensuring a lack of bias. Part of the reason for this is that in many situations humans 759

will be interacting directly with the LLM without a dedicated human teacher. Alternative 760

settings may have lower risks associated with them, such as in teaming settings where 761

humans are using LLMs in cybersecurity contexts such as paired programming or as a tool 762

for network analysis, threat detection, and a variety of other applications. Further research 763

into how the results here can be applied to these settings can add to our understanding of 764

how LLMs interact with humans. 765
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Appendix 961

In this appendix, ME-CS refers to the email cosine similarity metric used in our 962

regression analyses. 963

ANOVA analyses tables 964

Table 2. ANOVA results relating ME-CS to outcomes

Source Outcome d f1 d f2 F p η2
p

Student Correct 22 464 0.841 0.674 0.038
Teacher Correct 25 1720 1.648 0.0231 0.023
Student Confidence 22 464 1.539 0.0569 0.068
Teacher Confidence 25 1720 1.652 0.0225 0.023
Student ReactionTime 22 464 1.155 0.284 0.052
Teacher ReactionTime 25 1720 0.882 0.632 0.013
Student User Initial Performance 22 464 0.692 0.849 0.032
Teacher User Initial Performance 25 1720 0.863 0.659 0.012
Student User Improvement 22 464 1.557 0.0521 0.069
Teacher User Improvement 25 1720 1.014 0.444 0.015
Student User Final Performance 22 464 1.705 0.0247 0.075
Teacher User Final Performance 25 1720 1.189 0.237 0.017
Student Pre-Experiment Quiz Score 22 464 1.195 0.247 0.054
Teacher Pre-Experiment Quiz Score 25 1720 1.261 0.174 0.018
Student AI Gen Percept 22 464 1.348 0.135 0.060
Teacher AI Gen Percept 25 1720 0.702 0.86 0.010
Student Response Mssg Sim 22 464 5.624 4.86e−14 0.211
Teacher Response Mssg Sim 25 1720 1.377 0.102 0.020
Student Age 22 464 1.395 0.11 0.062
Teacher Age 25 1720 1.122 0.307 0.016
Student Gender Number 22 464 1.110 0.331 0.050
Teacher Gender Number 25 1720 0.880 0.635 0.013
Student Education Years 22 464 0.991 0.474 0.045
Teacher Education Years 25 1720 0.984 0.486 0.014
Student Phishing Experience 22 464 0.923 0.565 0.042
Teacher Phishing Experience 25 1720 0.912 0.589 0.013
Student Chatbot Experience 22 464 1.332 0.144 0.059
Teacher Chatbot Experience 25 1720 1.016 0.442 0.015
Student Cognitive Model Activity 22 464 1.725 0.0222 0.076
Teacher Cognitive Model Activity 25 1720 1.159 0.267 0.017

Mediation Analyses 965

Table 3. Mediation analysis Student and Teacher Messages on User Improvement by Age

Path Coef. SE p CI 2.5% CI 97.5% Sig

Age
∼ Age -0.0609 0.0211 0.00396 -0.102 -0.0195 Yes
User Improvement
∼ Age 0.00136 0.0212 0.949 -0.0402 0.0429 No
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Path Coef. SE p CI 2.5% CI 97.5% Sig

Total -0.0264 0.0212 0.212 -0.0679 0.0151 No
Direct -0.0264 0.0212 0.213 -0.068 0.0151 No
Indirect 1.507e−05 0.00116 0.98 -0.00254 0.00219 No

Table 4. Mediation analysis Student and Teacher Messages on User Improvement by Education Years

Path Coef. SE p CI 2.5% CI 97.5% Sig

Education Years
∼ Education Years -0.0326 0.0212 0.124 -0.0741 0.00893 No
User Improvement
∼ Education Years -0.214 0.0207 1.550e−24 -0.255 -0.173 Yes
Total -0.0264 0.0212 0.212 -0.0679 0.0151 No
Direct -0.0334 0.0207 0.106 -0.074 0.00713 No
Indirect 0.007 0.00466 0.1 -0.00167 0.017 No

Table 5. Mediation analysis Age Messages on Correct Categorization by Student and Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Age -0.0609 0.0211 0.00396 -0.102 -0.0195 Yes
User Improvement
∼ ME-CS 0.093 0.0211 1.082e−05 0.0516 0.134 Yes
Total 0.046 0.0211 0.0299 0.00448 0.0874 Yes
Direct 0.0518 0.0211 0.0141 0.0104 0.0932 Yes
Indirect -0.00586 0.00238 0.012 -0.0109 -0.0019 Yes

Table 6. Mediation analysis Education Years Messages on Correct Categorization by Student and
Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Education Years -0.0326 0.0212 0.124 -0.0741 0.00893 No
User Improvement
∼ ME-CS 0.093 0.0211 1.082e−05 0.0516 0.134 Yes
Total -0.151 0.0209 6.906e−13 -0.192 -0.11 Yes
Direct -0.148 0.0209 1.561e−12 -0.189 -0.107 Yes
Indirect -0.00287 0.00208 0.1 -0.0085 0.000427 No

Table 7. Mediation analysis Phishing Experience Messages on Correct Categorization by Student and
Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Phishing Experience 0.0242 0.0212 0.254 -0.0173 0.0657 No
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Path Coef. SE p CI 2.5% CI 97.5% Sig

User Improvement
∼ ME-CS 0.093 0.0211 1.082e−05 0.0516 0.134 Yes
Total 0.172 0.0209 2.797e−16 0.131 0.213 Yes
Direct 0.17 0.0208 5.082e−16 0.129 0.211 Yes
Indirect 0.00215 0.00202 0.26 -0.00159 0.0064 No

Table 8. Mediation analysis Chatbot Experience Messages on Correct Categorization by Student and
Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Chatbot Experience 0.000442 0.0212 0.983 -0.0411 0.042 No
User Improvement
∼ ME-CS 0.093 0.0211 1.082e−05 0.0516 0.134 Yes
Total -0.0209 0.0212 0.323 -0.0624 0.0206 No
Direct -0.021 0.0211 0.32 -0.0623 0.0204 No
Indirect 4.114e−05 0.00202 0.94 -0.00374 0.00476 No

Table 9. Mediation analysis AI Generation Perception Messages on Correct Categorization by Student
and Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ AI Generation Perception 0.0403 0.0212 0.0567 -0.00115 0.0818 No
User Improvement
∼ ME-CS 0.093 0.0211 1.082e−05 0.0516 0.134 Yes
Total -0.12 0.021 1.293e−08 -0.161 -0.0788 Yes
Direct -0.124 0.0209 3.741e−09 -0.165 -0.0829 Yes
Indirect 0.00395 0.0022 0.044 0.000156 0.00834 Yes

Table 10. Mediation analysis Pre Experiment Quiz Score Messages on Correct Categorization by
Student and Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Pre Experiment Quiz Score -0.0079 0.0212 0.709 -0.0494 0.0336 No
User Improvement
∼ ME-CS 0.093 0.0211 1.082e−05 0.0516 0.134 Yes
Total 0.0702 0.0211 9.064e−04 0.0288 0.112 Yes
Direct 0.0709 0.021 7.603e−04 0.0297 0.112 Yes
Indirect -0.000738 0.00204 0.684 -0.0046 0.00331 No
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Table 11. Mediation analysis Response Message Similarity Messages on Correct Categorization by
Student and Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Response Message Similarity 0.149 0.0209 1.244e−12 0.108 0.191 Yes
User Improvement
∼ ME-CS 0.093 0.0211 1.082e−05 0.0516 0.134 Yes
Total 0.235 0.0206 2.062e−29 0.195 0.275 Yes
Direct 0.226 0.0208 6.212e−27 0.185 0.267 Yes
Indirect 0.00884 0.00347 0.004 0.00285 0.0157 Yes

Table 12. Mediation analysis Age Messages on Correct Categorization by Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Age -0.0347 0.0239 0.147 -0.0817 0.0122 No
User Improvement
∼ ME-CS 0.109 0.0238 4.827e−06 0.0625 0.156 Yes
Total 0.0323 0.0239 0.177 -0.0146 0.0793 No
Direct 0.0362 0.0238 0.129 -0.0105 0.0829 No
Indirect -0.00383 0.00258 0.1 -0.00978 0.00013 No

Table 13. Mediation analysis Education Years Messages on Correct Categorization by Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Education Years -0.0563 0.0239 0.0186 -0.103 -0.00944 Yes
User Improvement
∼ ME-CS 0.109 0.0238 4.827e−06 0.0625 0.156 Yes
Total -0.109 0.0238 5.421e−06 -0.155 -0.0619 Yes
Direct -0.103 0.0237 1.557e−05 -0.149 -0.0562 Yes
Indirect -0.00582 0.00292 0.02 -0.0131 -0.00137 Yes

Table 14. Mediation analysis Phishing Experience Messages on Correct Categorization by Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Phishing Experience -0.00269 0.0239 0.91 -0.0497 0.0443 No
User Improvement
∼ ME-CS 0.109 0.0238 4.827e−06 0.0625 0.156 Yes
Total 0.0798 0.0239 8.405e−04 0.033 0.127 Yes
Direct 0.0801 0.0237 7.498e−04 0.0336 0.127 Yes
Indirect -0.000295 0.00264 0.848 -0.00468 0.00516 No
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Table 15. Mediation analysis Chatbot Experience Messages on Correct Categorization by Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Chatbot Experience 0.0254 0.0239 0.288 -0.0215 0.0724 No
User Improvement
∼ ME-CS 0.109 0.0238 4.827e−06 0.0625 0.156 Yes
Total -0.0248 0.0239 0.301 -0.0717 0.0222 No
Direct -0.0275 0.0238 0.247 -0.0742 0.0192 No
Indirect 0.00279 0.00288 0.316 -0.00189 0.00933 No

Table 16. Mediation analysis AI Generation Perception Messages on Correct Categorization by
Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ AI Generation Perception 0.00958 0.0239 0.689 -0.0374 0.0565 No
User Improvement
∼ ME-CS 0.109 0.0238 4.827e−06 0.0625 0.156 Yes
Total -0.082 0.0239 6.084e−04 -0.129 -0.0351 Yes
Direct -0.083 0.0237 4.797e−04 -0.13 -0.0365 Yes
Indirect 0.00105 0.00283 0.756 -0.00371 0.00719 No

Table 17. Mediation analysis Pre Experiment Quiz Score Messages on Correct Categorization by
Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Pre Experiment Quiz Score 0.00486 0.0239 0.839 -0.0421 0.0518 No
User Improvement
∼ ME-CS 0.109 0.0238 4.827e−06 0.0625 0.156 Yes
Total 0.052 0.0239 0.0298 0.00511 0.0989 Yes
Direct 0.0515 0.0238 0.0305 0.00484 0.0981 Yes
Indirect 0.000529 0.00242 0.88 -0.0038 0.00657 No

Table 18. Mediation analysis Response Message Similarity Messages on Correct Categorization by
Teacher

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Response Message Similarity 0.106 0.0238 9.378e−06 0.0591 0.153 Yes
User Improvement
∼ ME-CS 0.109 0.0238 4.827e−06 0.0625 0.156 Yes
Total 0.217 0.0234 4.474e−20 0.171 0.263 Yes
Direct 0.208 0.0234 1.665e−18 0.162 0.254 Yes
Indirect 0.00922 0.00296 0.0e+00 0.00459 0.0165 Yes
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Table 19. Mediation analysis Age Messages on Correct Categorization by Student

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Age -0.131 0.045 0.00371 -0.22 -0.0428 Yes
User Improvement
∼ ME-CS 0.0628 0.0453 0.166 -0.0262 0.152 No
Total 0.092 0.0452 0.0424 0.00316 0.181 Yes
Direct 0.102 0.0455 0.0255 0.0126 0.191 Yes
Indirect -0.01 0.00724 0.104 -0.0292 0.000972 No

Table 20. Mediation analysis Education Years Messages on Correct Categorization by Student

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Education Years 0.0234 0.0454 0.607 -0.0658 0.113 No
User Improvement
∼ ME-CS 0.0628 0.0453 0.166 -0.0262 0.152 No
Total -0.247 0.044 3.563e−08 -0.333 -0.16 Yes
Direct -0.248 0.044 2.820e−08 -0.334 -0.162 Yes
Indirect 0.0016 0.00366 0.58 -0.00317 0.0116 No

Table 21. Mediation analysis Phishing Experience Messages on Correct Categorization by Student

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Phishing Experience 0.0839 0.0452 0.0642 -0.00498 0.173 No
User Improvement
∼ ME-CS 0.0628 0.0453 0.166 -0.0262 0.152 No
Total 0.353 0.0425 1.063e−15 0.269 0.436 Yes
Direct 0.35 0.0427 2.197e−15 0.266 0.434 Yes
Indirect 0.00281 0.00433 0.5 -0.00345 0.0142 No

Table 22. Mediation analysis Chatbot Experience Messages on Correct Categorization by Student

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Chatbot Experience -0.0704 0.0453 0.121 -0.159 0.0186 No
User Improvement
∼ ME-CS 0.0628 0.0453 0.166 -0.0262 0.152 No
Total -0.000662 0.0454 0.988 -0.0899 0.0886 No
Direct 0.00378 0.0455 0.934 -0.0856 0.0931 No
Indirect -0.00444 0.00473 0.264 -0.0177 0.00179 No
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Table 23. Mediation analysis AI Generation Perception Messages on Correct Categorization by
Student

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ AI Generation Perception 0.114 0.0451 0.0121 0.025 0.202 Yes
User Improvement
∼ ME-CS 0.0628 0.0453 0.166 -0.0262 0.152 No
Total -0.192 0.0446 2.017e−05 -0.279 -0.104 Yes
Direct -0.202 0.0447 8.245e−06 -0.29 -0.114 Yes
Indirect 0.00975 0.00632 0.06 0.00106 0.0258 No

Table 24. Mediation analysis Pre Experiment Quiz Score Messages on Correct Categorization by
Student

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Pre Experiment Quiz Score -0.0423 0.0454 0.351 -0.131 0.0468 No
User Improvement
∼ ME-CS 0.0628 0.0453 0.166 -0.0262 0.152 No
Total 0.112 0.0451 0.0136 0.0231 0.2 Yes
Direct 0.115 0.0451 0.0114 0.026 0.203 Yes
Indirect -0.00287 0.00459 0.48 -0.0177 0.0027 No

Table 25. Mediation analysis Response Message Similarity Messages on Correct Categorization by
Student

Path Coef. SE p CI 2.5% CI 97.5% Sig

ME-CS
∼ Response Message Similarity 0.336 0.0428 2.460e−14 0.252 0.42 Yes
User Improvement
∼ ME-CS 0.0628 0.0453 0.166 -0.0262 0.152 No
Total 0.201 0.0445 7.485e−06 0.114 0.289 Yes
Direct 0.203 0.0473 2.069e−05 0.11 0.296 Yes
Indirect -0.00185 0.0162 0.912 -0.0355 0.0283 No

Pre-experiment Instructions 966

Instructions. In this experiment you will determine whether example emails are genuine 967

or phishing. When reviewing potential phishing emails, pay attention to the following 968

features. After this screen, there will be a quiz on this information. 969

• Real sender does not match the claimed sender: Phishing emails often pretend to be 970

from reputable companies, but you can usually spot a fake by checking the address 971

that sent the message. If the From address is a series of numbers, an odd mix of 972

characters, or not the official domain of the company it claims to be from, it’s likely a 973

phishing attempt. 974

• Email requests credentials: Legitimate companies will never ask for sensitive informa- 975

tion via email. If the email requests your username, password, credit card information, 976

or other sensitive data, it’s a phishing attempt. 977



Version October 20, 2025 submitted to Electronics 31 of 32

• Suspicious subject line: Phishing emails often use alarmist, threatening, or enticing 978

subject lines to grab your attention. If the subject is odd, generic, or doesn’t match the 979

content, it could be a phishing email. 980

• Urgent tone: Phishing scams create a sense of urgency to panic you into acting without 981

thinking. If an email asks for immediate action (e.g., “Your account will be suspended 982

unless you update your information”), it’s likely a scam. 983

• Too-good-to-be-true offers: Emails that promise rewards, discounts, or prizes in 984

exchange for personal information are likely phishing. 985

• Link does not match the text: A common tactic is disguising a dangerous link with 986

innocent-looking text. Hover your cursor over links before clicking. If the URL doesn’t 987

match the link text, or looks suspicious in any way, do not click. For instance, if the 988

link text reads “bank.com” but hovering shows “hackingsite.com”, it’s a phishing 989

attempt. 990

Pre-experiment Quiz 991

1. What type of language do phishing emails often use to create a sense of panic? 992

• Urgent language 993

• Friendly language 994

• Rude language 995

• Mean language 996

2. What might a phishing email request of you that would compromise your identity? 997

• Personal information like your favorite color 998

• Sensitive information like credit card numbers 999

• Sensitive information like your celebrity crush 1000

• Irrelevant information like your dog’s name 1001

3. What types of actions might phishing emails request from you that could lead to 1002

malware being installed on your computer? 1003

• Clicking links only 1004

• Downloading attachments only 1005

• Replying with your computer’s information only 1006

• All of the above 1007

4. How might a phishing email try to ensure that you are susceptible to a phishing 1008

attempt? 1009

• Being overly friendly 1010

• Calling you a generic title 1011

• Using poor grammar 1012

• Saying you won the lottery 1013

5. How might a phishing email attempt to convince you that it was sent from a legitimate 1014

source? 1015

• Using an email from a website that you have never heard of 1016

• Sending the email from a website with a famous company name 1017

• Adding a link to a real website in the text of the email 1018

• Using another website name that is different from the one sending the email 1019

6. How might a phishing email convince you to click on a fake link? 1020

• Adding a lot of random numbers and letters into the link 1021

• Changing the text of the link (can be checked by hovering over it) 1022

• Changing the color of the link to make it look like you’ve clicked it before 1023

• Keeping the link short so it looks legitimate 1024
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Experiment Questions 1025

1. Is this a phishing email? 1026

• Yes 1027

• No 1028

2. On a scale from 1–5, with 5 being totally confident, how confident are you in your 1029

answer to Question 1? 1030

• 1 1031

• 2 1032

• 3 1033

• 4 1034

• 5 1035

3. What action would you take after receiving this email? 1036

• Respond 1037

• Click link 1038

• Check sender 1039

• Check link 1040

• Delete email 1041

• Report email 1042

Post-experiment Questionnaire 1043

1. Of the phishing emails you’ve encountered, what percentage do you think were 1044

generated by artificial intelligence models? 1045

• 100% of the phishing emails I read were written by an Artificial Intelligence 1046

model. 1047

• 75% of the phishing emails I read were written by an Artificial Intelligence model. 1048

• 50% of the phishing emails I read were written by an Artificial Intelligence model. 1049

• 25% of the phishing emails I read were written by an Artificial Intelligence model. 1050

2. Of the ham (i.e., non-phishing) emails you’ve encountered, what percentage do you 1051

think were generated by artificial intelligence models? 1052

• 100% of the ham emails I read were written by an Artificial Intelligence model. 1053

• 75% of the ham emails I read were written by an Artificial Intelligence model. 1054

• 50% of the ham emails I read were written by an Artificial Intelligence model. 1055

• 25% of the ham emails I read were written by an Artificial Intelligence model. 1056

3. Of the phishing emails you’ve encountered, what percentage do you think were styled 1057

(i.e., appearance and format) by artificial intelligence models? 1058

• 100% of the phishing emails I read were styled by an Artificial Intelligence model. 1059

• 75% of the phishing emails I read were styled by an Artificial Intelligence model. 1060

• 50% of the phishing emails I read were styled by an Artificial Intelligence model. 1061

• 25% of the phishing emails I read were styled by an Artificial Intelligence model. 1062

4. Of the ham (i.e., non-phishing) emails you’ve encountered, what percentage do you 1063

think were styled (i.e., appearance and format) by artificial intelligence models? 1064

• 100% of the ham emails I read were styled by an Artificial Intelligence model. 1065

• 75% of the ham emails I read were styled by an Artificial Intelligence model. 1066

• 50% of the ham emails I read were styled by an Artificial Intelligence model. 1067

• 25% of the ham emails I read were styled by an Artificial Intelligence model. 1068

5. What criteria did you use to identify whether an email was a phishing attempt? 1069

Open response. 1070
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