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Abstract

Training users to correctly identify potential security threats like social engineering attacks
such as phishing emails is a crucial aspect of cybersecurity. One challenge in this training
is providing useful educational feedback to maximize student learning outcomes. Large
Language Models (LLMs) have recently been applied to wider and wider applications,
including domain-specific education and training. These applications of LLMs have many
benefits, such as cost and ease of access, but there are important potential biases and con-
straints within LLMs. These may make LLMs worse teachers for important and vulnerable
subpopulations including the elderly and those with less technical knowledge. In this work
we present a dataset of LLM embeddings of conversations between human students and
LLM teachers in an anti-phishing setting. We apply these embeddings onto an analysis
of human-LLM educational conversations to develop specific and actionable targets for
LLM training, fine-tuning, and evaluation that can potentially improve the educational
quality of LLM teachers and ameliorate potential biases that may disproportionally impact
specific subpopulations. Specifically, we suggest that LLM teaching platforms either speak
generally or mention specific quotations of emails depending on user demographics and
behaviors, and to steer conversations away from an over focus on the current example.

Keywords: Cybersecurity, Phishing, Large Language Models, Education, Embeddings

1. Introduction

Recent advances in Generative Artificial Intelligence (GAI) including the advent of
foundation models such as Large Language Models (LLMs) have been fundamentally
transformative, demonstrating unprecedented performance across a wide range of tasks,
including text generation, sentiment analysis, and question answering [1,2]. While the
generalist nature of LLMs and other GAI models has facilitated their broad applicability,
it poses significant limitations in scenarios requiring nuanced, user-specific responses [3],
such as in educational contexts like anti-phishing training [4]. One of the most critical
efforts to prevent social harm done by these new technologies is the effective training
against social engineering, deepfakes of news, and other nefarious applications of GAL

The complexity of social engineering attacks has significantly increased in recent
months due in part to the advanced sophistication of GAI models [5]. These models can be
used to quickly design new attacks from scratch using various methods such as translating
previously used databases of attacks or creating complex novel attacks leveraging images,
video, text, and audio [6] in an attempt to increase the success of social engineering attempts.
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Despite the significant threat posed by GAI models such as LLMs in accelerating social
engineering attacks [7-9], only 23% of companies polled by Proofpoint in 2024 had trained
their employees on GAI safety [10].

One reason for this limitation of adequate training regarding GAI based phishing
attacks is the high cost associated with traditional training methods such as in-person
lecturing [11], and the time required to develop remote learning materials [12]. However,
research has suggested that virtual learning of social engineering training can be more
effective than in-person training [11]. A recent approach to addressing this educational
limitation is to leverage GAI models themselves to design educational materials while
providing feedback to users [4]. In the context of social engineering training in identifying
phishing emails, this approach has the benefit of allowing for a training platform that can
simultaneously generate realistic phishing attempts. While LLM supported training and
education has benefits of easy access and scalability, it has issues related to domain specific
knowledge and individualization of feedback in educational settings [13].

In this work we begin by presenting a dataset that serves to augment the original
dataset presented by Malloy et al [4] containing a set of messages sent between human
students and an LLM teacher in an anti-phishing education platform. We augment this
dataset with two embedding dictionaries; the first is a set of embeddings of the messages
sent by LLM teachers and human students; the second is a set of embeddings of open
responses that students provided to describe the method that they used to determine if
emails were phishing or not. This dataset includes embeddings formed by 10 different
embedding models ranging from open to closed models and a range of embedding sizes.

After describing this presented dataset, we compare the 10 different embedding
models in their correlation to human student learning outcomes. Next, we evaluate the
usefulness of these embedding dictionaries by comparing the cosine similarity of the
embeddings of messages sent by LLM teachers and students with the embeddings of the
emails presented to students. These cosine similarity measurements are compared with
several metrics of student learning performance, demographics, and other measures of the
educational platform. We conclude this paper with a description of the results we present
and a contextualization of these results with specific recommendations for improving LLM
teaching methods.

2. Related Work
2.1. LLMs in Education

One example of a domain specific application of LLM education is discussed in
[14] which focuses on databases and information systems in higher education. Here,
the authors find that issues such as bias and hallucinations can be mitigated in domain
specific educational applications through the use of an LLM-based chatbot ‘'MoodleBot’, a
specialized system tailored for a single specific educational course. These results highlight
the importance of domain-specific knowledge in the design and evaluation of LLM teaching
platforms. Meanwhile, a more generalist educational LLM platform is presented in [15]
called multiple choice question generator (MCQGen), that can be applied to a variety of
domains through the integration of Retrieval Augmented Generation and an human-in-
the-loop process that ensures question validity.

Beyond applications of LLMs as merely educational tools is research into use cases
of agentic LLMs that make decisions regarding student education. One recent survey by
Chuetal. [16] of LLM applications on education focuses on the use of LLM agents, which
extend the traditional use-case of LLMs beyond a tool into a more independent model that
makes decisions and impacts an environment [17]. This survey highlights the importance
of mitigating hallucinations and ensuring fairness in educational outcomes. This insight
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guides an important focus of this work which compares different potentially vulnerable &
subpopulations in the way that they converse with an LLM chatbot. Many examples exist &
in the literature of LLM bias demonstrating potential causes of unfairness, such as racial &
bias [18], gender bias [19], or age [20]. These biases become increasingly relevant in
domain specific applications of LLMs in education, as the ways in which biases interact e
with education become more complete than in other LLM applications [21]. 8

2.2. LLM Personalization in Education 89

Personalization techniques have traditionally been extensively researched within in- o
formation retrieval and recommendation systems but remain relatively underexplored o
in the context of LLMs [1]. Developing personalized and domain-specific educational .
LLMs involves leveraging user-specific data such as profiles, historical interactions, and o
preferences to tailor model outputs [22]. Effective personalization of LLMs is critical in do- o
mains such as conversational agents, education, healthcare, and content recommendation,
where understanding individual preferences significantly enhances user satisfaction and
engagement [22,23]. o7

Recent literature highlights various strategies for personalizing LLMs, broadly cat- e
egorized into fine-tuning approaches, retrieval augmentation, and prompt engineer- o
ing [2,22,23]. Fine-tuning methods adapt LLM parameters directly to user-specific contexts, 10
showing significant performance improvements in subjective tasks like sentiment and emo- 101
tion recognition [2]. Fine-tuned LLMs have been applied onto educational domains such 10
as the Tailor-Mind model which generates visualizations for use in educational contexts 10
[24] However, these approaches are resource-intensive and often impractical for real-time 10
personalization across numerous users [25]. 105

Retrieval augmentation, on the other hand, enhances personalization efficiency by 10
dynamically incorporating external user-specific information at inference time without 17
extensive model retraining [26]. Methods like LaMP utilize user profiles and historical data, 10
selectively integrating relevant context through retrieval techniques [1]. More recently, 10
frameworks such as OPEN-RAG have significantly improved reasoning capabilities within 10
retrieval-augmented systems, especially when combined with open-source LLMs [23]. 1w
Prompt engineering and context injection represent lighter-weight approaches where user- 1w
specific information is embedded within the prompt or input context, guiding the LLM 113
toward personalized responses [22,27]. RAG has been applied on to domain-specific 14
educational contexts like computing education [28] through the use of small LLMs that us
incorporate RAG. Other recent approaches in LLM education with RAG seek to personalize 11
pedagogical content by predicting user learning styles [29], These methods, while efficient, 1
are limited by context length constraints and impermanent personalization. 118

2.3. Automatic Phishing Detection 119

On the defensive side, research efforts are increasingly focused on countering these 12
threats. The growing sophistication of LLM-generated phishing emails presents challenges 1z
for traditional phishing detection systems, many of which are no longer able to reliably 1
identify such attacks. This issue has thus become a focal point in Al-driven cybersecurity 1
research, which is particularly evident in the following two leading approaches. 124

[30] employed LLMs to rephrase phishing emails in order to augment existing phish- s
ing datasets, with the goal of improving the ability of detection systems to identify auto- s
matically generated phishing content. Their findings suggest that the detection of LLM- 1
generated phishing emails often relies on different features and keywords than those used 12
to identify traditional phishing emails. 129
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LLM-generated phishing emails were also used in the approach of [31] to fine-tune
various Al models, including BERT-, T5- and GPT-based architectures. Their results demon-
strated a significant improvement in phishing detection performance across both human-
and LLM-generated messages, compared to the baseline models.

2.4. LLM Generated Phishing Emails

Several studies have highlighted that generative Al can be leveraged to create highly
convincing phishing emails, significantly reducing the human and financial resources
typically required for the creation of them [30-35]. This development is driven in part by
the increasing ability of LLMs to maintain syntactic and grammatical integrity while they
also embed cultural knowledge into artificially generated messages [36]. Moreover, with
the capacity to generate multimedia elements such as images and audio, GAI can enhance
phishing emails by adding elements that further support social engineering attacks [32].
The collection of personal data for targeting specific individuals can also be facilitated
through Al-based tools [35].

In [31], Bethany et al. evaluated the effectiveness of GPT-4-generated phishing emails
and confirmed their persuasive power in controlled studies. A related study, revealed that
while human-crafted phishing emails still demonstrated a higher success rate among test
subjects, they were also more frequently flagged as spam compared to those generated by
GPT-3 models.[33] Targeted phishing attacks—commonly known as spear phishing—can
also be rapidly and extensively generated by low experienced actors using GAI, as demon-
strated in [35] experiments with a LLaMA-based model.

2.5. Anti-Phishing Education

Anti-Phishing education seeks to train end-users to correctly identify phishing emails
they receive in real life and react appropriately. This education is an important first step
in cybersecurity as user interaction with emails and other forms of social engineering is
often the easiest means for cyberattackers to gain access to privileged information and
services [37]. Part of the ease with which attackers can leverage emails is due to the high
number of emails that users receive as a part of their daily work, which leads to a limited
amount of attention being placed on each email [38]. Additionally, phishing emails are
relatively rare to receive as many filtering and spam detection methods prevent them from
being sent to users’ inboxes. For this reason, many users are relatively inexperienced with
phishing emails and may incorrectly identify them [39]. Despite the commonality of cyber-
security education and training in many workplaces, social engineering including phishing
emails remains a common method of attack with a significant impact on security [40].

Part of the challenge of anti-phishing education is defining the qualities of a good
education platform and determining how to evaluate both the platform and the ability of
users to detect emails in the real world. In their survey, Jampen et al. note the importance of
anti-phishing education platforms that can equitably serve large and diverse populations in
an inclusive manner [37]. This review compared "user-specific properties and their impact
on susceptibility to phishing attacks’ to identify key features of users such as age, gender,
email experience, confidence, and distrust. This is crucial as cybersecurity preparedness is
only as effective as its weakest link, meaning anti-phishing education platforms that only
work for some populations are insufficient to appropriately address the dangers associated
with phishing emails [41]. It is important for anti-phishing training platforms to serve
populations as they vary across these features to ensure that the general population is safe
and secure from attacks using phishing emails [42].

Another important area of research uses laboratory and on-line experiments with
human participants engaged in a simulation of anti-phishing training to compare different
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approaches. This has the benefit of allowing for more theoretically justified comparisons,
since traditional real-world anti-phishing education has high costs associated with it,
making more direct comparisons difficult [40]. Some results within this area of research
indicate that more detailed feedback, rather than only correct or incorrect information,
significantly improves post-training accuracy in categorizing emails as either phishing or
ham [43]. Additional studies indicate that personalizing LLM-generated detailed feedback
to the individual user through prompt engineering can further improve the educational
outcomes of these platforms [4,44]. However, these previous approaches do not involve
the training or fine-tuning of more domain-specific models, and rely on off-the-shelf black
box models using API calls to generate responses.

3. Dataset
3.1. Original Dataset

The experimental methods used to gather the dataset used for analysis in this work
are described in [4] and made available on OSF by the original authors'. 417 participants
made 60 total judgments about whether emails they were shown were safe or dangerous,
with 8 different experiment conditions that varied the method of generating emails and
the specifics of the LLM teacher prompting for educational feedback. These emails were
gathered from a dataset of 1461 emails, with a variety of methods used to create these
emails. In each of the four conditions we examine used educational example emails that
were generated by a GPT-4 LLM model. While the experimentation methods contained
8 different conditions, we are interested only in the four conditions that involved conver-
sations between users and the GPT-4.1 LLM chatbot. In each of these experiments, the
participants were given feedback on the accuracy of their categorization from an LLM that
they could also converse with.

Between these four conditions, the only difference was the presentation of emails
to participants and the prompting of the LLM model for feedback. In the ‘base’ first
condition, emails were selected randomly, and the LLM model was prompted to provide
feedback based on the information in the email and the decision of the student. In the
second condition, emails were selected by an IBL cognitive model in an attempt to give
more challenging emails to the student, based on the past decisions they made. The third
condition selected emails randomly but included information from the IBL cognitive model
in the prompt to the LLM; specifically, this information was a prediction of which features of
an email the current student may struggle with. Finally, the fourth condition combined the
two previous ones, using the IBL cognitive model for both email selection and prompting.

In the original dataset, there are three sets of LLM embeddings of each email shown to
participants using OpenAl API to access 3 embedding models ('text-embedding-3-large’,
"text-embedding-3-small’, and "text-embedding-ada-002") [45]. These embeddings were
used alongside a cognitive model of human learning and decision making called Instance
Based Learning [46—48] to predict the training progress of users. However, the original
paper [4] did not directly analyze the conversations between end users and the LLM
chatbots, and did not create a database of chatbot conversation embeddings.

3.2. Proposed Dataset

In this work we introduce an embedding dictionary ? of these messages and evaluate
the usefulness of this embedding dictionary in different use cases. We also include in the
same dataset an embedding dictionary of the open response replies that students gave at

https:/ /osf.io/wbg3r/
2 https:/ /osf.io/642zc/

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222


https://osf.io/wbg3r/
https://osf.io/642zc/

Version October 20, 2025 submitted to Electronics 6 of 32

the end of the experiment to answer the question of how they determined if emails were
safe or dangerous. In the majority of our analysis we combine the four conditions that
included conversations with chatbots because the previously mentioned differences do not
impact conversations between participants and the LLM chatbot.

One major limitation to this previous dataset is the exclusive use of closed source
models. While the embeddings themselves were included, the closed source nature of
the three embedded models used in [4] limits the reproducibility of the work and the
accessibility to other researchers. In this work we employ the same three closed source
models as in the original work as well as seven new open source models (qwen3-embedding-
0.6B° [49], qwen3-embedding-4B * [49], qwen3-embedding-8B ° [49], all-MiniLM-L6-v2 °,
bge-large-en-v1.5 7 [50], embeddinggemma-300m ® [51], and granite-embedding-small-
english-r2” [52]). For all models that did not directly output embeddings, mean pooling
was used to extract embeddings [53]. There were 3846 messages sent between chatbots
and 146 different users during the anti-phishing training, resulting in 38460 message
embeddings in our dataset. Additionally, we provide embeddings for the seven new open
source models of the emails in the original dataset resulting in 5856 new email embeddings.

Our conversation analysis presented in the following section begins by a comparison
of the ten embedding models contained in our proposed dataset along a single metric.
After this, we perform a series of regressions that compare correlations of different metrics
of performance with the cosine similarity between the embeddings of messages and emails.
Finally, we perform a mediation analysis to give more strength to our conclusions and
recommendations. After this analysis we proceed to the Results and Discussion sections.

4. Conversation Analysis

In this section we demonstrate the usefulness of the presented dataset of embeddings
between users and the teacher LLM in this anti-phishing education context. We begin by
comparing the cosine similarity of the embeddings of messages sent by students and the
LLM teacher with the emails that the student was viewing when the message was sent.
This is an exploratory analysis that serves to examine whether cosine similarity is correlated
with three different student performance metrics. An important aspect of this analysis is
that it is purely correlational, meaning that we cannot determine causal relationships or the
direction of correlational relationships. Our goal with this analysis is to explore potential
methods of improving LLM education that can be further explored in future research. Code
to generate all figures and statistical analysis in this section is included online'".

4.1. Embedding Model Comparison

Before presenting our analysis of the correlations between cosine similarity and dif-
ferent attributes of student performance and demographics, we first seek to motivate our
choice of cosine similarity as a metric. There are several more simple metrics that could be
calculated between emails and messages without the need for embedding models, raising
the question of the value of our proposed dataset. For instance, metrics of the lexical
overlap between emails and messages such as the Jaccard [54], the proportion of common
words between the message and the email, and the Rouge [55], a count of how many of the

https:/ /huggingface.co/Qwen/Qwen3-Embedding-0.6B

https:/ /huggingface.co/Qwen/Qwen3-Embedding-4B

https:/ /huggingface.co/Qwen/Qwen3-Embedding-8B

https:/ /huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https:/ /huggingface.co/BAAI/bge-large-en-v1.5

© ® N o Ul e W

https:/ /huggingface.co/google/embeddinggemma-300m
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223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263


https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
https://huggingface.co/Qwen/Qwen3-Embedding-4B
https://huggingface.co/Qwen/Qwen3-Embedding-8B
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/google/embeddinggemma-300m
https://huggingface.co/ibm-granite/granite-embedding-small-english-r2
https://github.com/TailiaReganMalloy/PhishingConversations

Version October 20, 2025 submitted to Electronics

7 of 32

Cosine Similarity Correlation to Learning Metrics By Model Embedding Size

0.30 ] 3
v Overall r*=0.624, p=0.054
ey
T 0.25 openal
i road
£ 0204 Google Gemma OpenAl ADA mean ri=0.173 Qwenp 88
E aie e rmean ri=0.151 Qwen3 48 p=2.4e-10 mean|rl=0.153
3 n’fla';; D_EU 143 p=3.9e-07 mean r=0.135 p=24e-05
= 015 P p=5.9e-06
e MiniLM-L6 openal
5 mean ri=0.083 S
= q =0.003
F 0.10 P . mean ri=0.155
w Qwen3 0.6B p=1.6e-06
& 0.05 p=0.88 mean ri=0.021
(SR p=0.27
500 1000PA4 BEELargg g 2000 2500 3000 3500 4000
mean r<=0.023 N
p=0.49 Embedding Size
Message length vs Prop. common words vs Shared n-grams vs

° Learning Metrics Learning Metrics Learning Metrics

=

2 ||r’=0.064, p=0.28 5 ||/r*=0.255,p=0.14 5 [|r*=0.137, p=0.11

= | = =R

o I 5

= = =

E S &

T | —" e o] /

N o o

5 [v] o

0.2 0.4 0.6 0.8 00 01 02 03 04 05 0 25 50 75 100 125

Message length (tokens) Proportion common words Shared n-gram count (n=3 or 4)

Figure 1. Top: A comparison of the correlation between three learning metrics and the cosine
similarity of embeddings of messages sent by both teachers and students, and embeddings of email
educational examples. This demonstrates significant correlation in the majority of models, and a
general trend of increasing correlation with increasing embedding size. Bottom Left: The correlation
between message length and the three learning metrics, demonstrating insignificant correlation.
Bottom Middle: The correlation between the three learning metrics and the proportion of common
words between emails and messages, also demonstrating insignificant correlation. Bottom Right:
The correlation between the three learning metrics and the number of shared n-grams (2,3,4, or 5)
between emails and messages, additionally demonstrating no significant correlation.

same short phrases (n-grams) appear in both texts. Additionally it is important to control
for attributes such as the message length [56], since longer messages may have on average
higher similarities to emails since they are of a similar length.

If the correlational analysis we present in this section could be equally related to these
alternative metrics, it would demonstrate an issue with our proposition of the usefulness
of the dataset we present. To address this, we begin by comparing the correlation of three
metrics of student performance, their correct categorization, their confidence, and their
reaction time. In Figure 1 we compare the correlation between three learning metrics and
the cosine similarity of embeddings of messages sent as feedback and the emails students
are observing. We report this average for 10 different embedding models. Additionally, we
compare these correlations to the alternative metrics previously mentioned.

To determine which embedding model is ideal for our correlation analysis, we compare
each of these embedding models in terms of the average correlation of our three metrics,
correct categorization, confidence, and reaction time. This is shown on the top row of
Figure 1 which has on the x axis the embedding size of the models under comparison, and
on the y-axis the average correlation (Pearson R?) of those three metrics. Overall we see a
significant trend that models with larger embedding sizes are typically better correlated
to the learning metrics we are interested in. This result is promising for our analysis, as
comparing the similarity of larger embeddings often captures semantic similarity better
than smaller embeddings [57]. The highest correlation to learning metrics is observed when
comparing the cosine similarity of emails and messages generated by the Open Al Large 3
model which has an embedding size of 3048. For this reason we will compare the cosine
similarity as measured using embeddings formed by the Open Al Large 3 model in all
following analyses.
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4.2. Regression Analyses 288

In all regression analyses in this section, we first bin the message embedding cosine 2
similarities to email embeddings to the nearest 0.01, grouped based on the sender. Addi- 200
tionally, all message cosine similarity values on the x-axis are normalized to between 0-1 2
grouped by the message sender. This is the source of the values on the x-axis of each plot. 20
Then, we plot as a scatterplot the averages for the metric on the y-axis of all of the binned s
messages. For example, in the left column of Figure 2, the leftmost blue point represents the 20
average correct categorization for all trials where messages were sent that had embeddings 20
with a cosine similarity to email embeddings of 0.00. The significance of these regressions s
is based on Pearson correlation coefficients with the R? and p values shown at the top of 2
each subplot. Finally, each variable comparison (e.g correct categorization and message 2
cosine similarity to email) has a T-Test run to compare the correlation in a different manner 20
that does not use binned message cosine similarity values. 300

The first of these metrics is the percent of correct categorization by the student, the s
second is their confidence in the categorization, and the last is the reaction time of the s
student. Ideally, the teacher LLM would be providing feedback that is easy to quickly  sos
understand and leads to high confidence and correct categorizations. These three metrics s
are compared to the cosine similarity of emails with respect to both student and teacher o5
message embeddings as shown in Figure 2. 306

4.3. Categorization Accuracy 307

The relationship between message cosine similarity and user categorization accuracy is o
shown on the middle column of Figure 2. The analysis of student accuracy in categorization  so
revealed that both the human student’s and teacher LLM message cosine similarities to  sw
emails were positively associated with the likelihood of a correct categorization. The su
human student’s message-email cosine similarity showed a moderate positive correlation s
with correct categorization, that is not robust when evaluated with ANOVA (Pearson 1
Correlation: R?> = 0.243,p = 0.0197, ANOVA: F(22,464) = 0.841, p = 0.674, 17% = 3.
0.038). The teacher LLM’s message similarity exhibited a strong positive association with s
correct outcomes, a relationship further corroborated by statistically significant results from s
ANOVA, though the effect size was small (Pearson Correlation R? = 0.578, p = 6.66x107°, sy
ANOVA: F(25,1720) = 1.648, p = 0.0231, ryf, = 0.023) These results indicate that student s
performance was higher when the messages sent by either them or their teacher were more s
closely related to the email that was being observed by the student. Furthermore, the results 0
suggest that the LLM’s message similarity is a stronger predictor of correct categorization sz
than the human student’s similarity, though the ANOVA effect sizes remain modest. 32

4.4. Categorization Confidence 323

The relationship between message cosine similarity and user confidence in their s
categorization is shown in the middle column of Figure 2. The analysis of students’” s
categorization confidence showed a divergent trend for the student and the teacher in s
relation to message similarity. This is a surprising result, since the previous analysis =7
of categorization accuracy indicated that both student and teacher messages that were s
more related to the current email were associated with better performance. However, s
confidence is a separate dimension from accuracy as low confidence correct answers and s
high confidence incorrect answers can change the relationship between message embedding  sx:
similarities and this metric of student performance. The cosine similarity between a s
student’s message and the email content was negatively associated with the student’s s
confidence rating (Pearson Correlation: R* = 0.269,p = 0.0133, ANOVA: F(22,464) = s
1.539, p = 0.0569, 7 = 0.068).
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Correct vs Message«Email Cosine Similarity Confidence vs MessageeEmail Cosine Similarity ReactionTime vs Message«Email Cosine Similarit
Human Student: R2=0.243, p=0.0197 404 Human Student: R2=0.269, p=0.0133 250001 Human Student: R2=0.019, p=0.537
Teacher LLM: R?=0.578, p=6.66e-06 , | Teacher LLM: R2=0.216, p=0.0169 Teacher LLM: R2=0.250, p=0.00928
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Figure 2. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Left: A correlation analysis between message cosine similarity to
emails with the probability of correct categorization, showing significant correlation for both types
of messages. Middle: A correlation analysis of message cosine similarity to emails and student
confidence in their categorization, indicating a significant positive correlation for teacher messages
and a significant negative correlation for student messages. Right: A correlation analysis between
student reaction time and message cosine similarity to emails, indicating no significance for messages
sent by students but a significant, but moderate, positive trend for messages sent by teachers.

In other words, students who more closely echoed the email’s content in their own
messages tended to report lower confidence in their categorization decisions, but this
pattern was not consistently supported across groups, as indicated by ANOVA score.
By contrast, the teacher LLM’s message similarity showed a positive correlation with
student confidence which was also statistically significant in ANOVA (Pearson Correlation:
R%? = 0.216,p = 0.0169, ANOVA: F(25,1720) = 1.652, p = 0.0225, 17’2, = 0.023). This
indicates that when the teacher’s response closely matched the email content, students
tended to feel slightly more confident about their categorizations, although the effect size
was small.

4.5. Categorization Reaction Time

The relationship between message cosine similarity and reaction time is shown on
the right hand side of Figure 2. The relationship between reaction time and message
similarity differed markedly by role. There was no significant association between the
human student’s message similarity and their reaction time, not with Pearson Correlation
nor with ANOVA (Pearson Correlation: R? = 0.019, p = 0.537, ANOVA: F(22,464) = 1.155,
p = 0.284, i, = 0.052), indicating that how closely a student’s message mirrored the
email content did not measurably influence how quickly they responded. In contrast, the
teacher LLM's message similarity was significantly associated with longer reaction times in
regard to Pearson Correlation, but ANOVA also showed just a small effect size (Pearson
Correlation: R? = 0.250, p = 0.0093, ANOVA: F(25,1720) = 0.882, p = 0.632, 17,2, = 0.013).

Higher cosine similarity between the teacher’s message and the email corresponded to
increased time taken by students to complete the categorization task, even if the effect was
not conventionally significant with ANOVA, it shows a trend. In practical terms, when the
teacher’s response closely resembled the email text, students tended to require more time
to finalize their categorization, whereas the student’s own content overlap had little to no
observable effect on timing. These results are presented as correlational patterns (from the
regression analysis) and do not imply causation, but they highlight that teacher-provided
content overlap was linked to slower student responses while student-provided overlap
was not.
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User Initial Performance User Improvement User Final Performance
vs MessageeEmail Cosine Similarity vs MessageeEmail Cosine Similarity vs MessageeEmail Cosine Similarity
1001 Human Student: R2=0.024, p=0.476 Human Student: R2=0.370, p=0.00209 Human Student: R2=0.308, p=0.00602
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Figure 3. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Left: A correlation analysis between message cosine similarity to
emails with user initial performance, showing no significant correlation for both types of messages.
Middle: A correlation analysis of message cosine similarity to emails and student categorization
improvement, indicating a significant negative correlation for student messages and a no significant
correlation for teacher messages. Right: A correlation analysis between student final performance
and message cosine similarity to emails, indicating no significance for messages sent by teachers but
a significant negative trend for messages sent by students.

4.6. Student Learning Outcomes

The next analysis that we perform is related to the learning outcomes of the students,
as well as their responses to the post-experiment questionnaire that asked them questions
about whether they thought the emails that they observed were written by humans or an
LLM. Note that in the three conditions we examine here, all of the emails were written and
stylized with HTML and CSS code by a GPT-4.1 LLM, meaning that the correct perception
of emails as Al generated is 100 percent. The open response question that is analyzed on
the right column of figure 3 is the student’s response to the question of how they made
their decisions about whether an email was safe or dangerous.

4.6.1. User Initial Performance

The left column of figure 3 compares the average message cosine similarity to the
current email being observed by the student with the initial performance of the student.
Here we see that neither the messages sent by human students nor the teacher LLM
are strongly correlated with user initial performance. There is a slight positive trend
for both regressions where higher cosine similarity with student messages is associated
with better initial performance (Pearson Correlation: R% = 0.024, p = 0.476, ANOVA:
F(22,464) = 0.692, p = 0.849, ;7% = 0.032), and similarly for teacher LLM similarity
(Pearson Correlation R?> = 0.075,p = 0.176, ANOVA: F(25,1720) = 0.863, p = 0.659,
17;27 = 0.012). However, both of these have low correlations with high p-values and the
ANOVA results show no significance and small effect sizes. This indicates that there is no
relationship between the conversations of human students and LLM teachers and initial
performance, at least when measured by message cosine similarity to emails. This makes
intuitive sense as the messages between participants and students begin after this initial
pre-training phase when there is no feedback yet.

4.6.2. User Training Outcomes

The middle column of figure 3 compares the user improvement to our measure of
message cosine similarity to emails. Here, we can see that only the messages sent by human
students have cosine similarities to emails that are correlated with user improvement,
supported by Pearson Correlation. However, interestingly this is actually a negative trend,
meaning that higher human message cosine similarity to emails results in lower average
user improvement (Pearson Correlation: R? = 0.370, p = 0.002 ANOVA: F(22,464) = 1.557,
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Pre-Experiment Quiz Score Perception of Emails as Al Generated Response Message Similarity
vs MessageeEmail Cosine Similarity vs MessageeEmail Cosine Similarity vs MessageeEmail Cosine Similarity

201 Human Student: R2=0.047, p=0.32 Human Student: R2=0.005, p=0.75 051 Human Student: R?=0.655, p=2.91e-06
Teacher LLM: R?=0.002, p=0.81 80 1 Teacher LLM: R?=0.117, p=0.0869 Teacher LLM: R?=0.595, p=3.94e-06
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Figure 4. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Left: A correlation analysis between message cosine similarity to
emails with user initial performance, showing no significant correlation for both types of messages.
Middle: A correlation analysis of message cosine similarity to emails and student categorization
improvement, indicating a significant negative correlation for student messages and a no significant
correlation for teacher messages. Right: A correlation analysis between student final performance
and message cosine similarity to emails, indicating no significance for messages sent by teachers but
a significant negative trend for messages sent by students.

p = 0.0521, i7;, = 0.069)), though the ANOVA result is not statistically significant, indicating
that the effect is not robust across groups. Meanwhile, this same comparison of teacher
LLM messages shows no correlation at all (Pearson Correlation: R> = 0.000, p = 0.945
ANOVA: F(25,1720) = 1.014, p = 0.444, 57; = 0.015). This goes against the intuition
that conversations that focus on the content of emails are beneficial to student learning
outcomes that were established in the previous set of results. However, we believe they are
not completely contradictory as a human student sending messages about specific parts of
emails, even including specific passages of the email, may indicate a high level of confusion
about the categorization.

4.6.3. User Final Performance

The right column of figure 3 compares the user improvement to the message cosine
similarity to emails. Similarly to the comparison to user improvement, here we see no
correlation with the LLM teacher messages and user final performance (Pearson Correlation
R% = 0.043, p = 0.311 ANOVA: F(25,1720) = 1.189, p = 0.237, 175 = 0.017), while the hu-
man emails have a similar negative correlation (Pearson Correlation R?> = 0.308, p = 0.006
ANOVA: F(22,464) = 1.705, p = 0.0247, 17;; = 0.075). Both correlation measures support
these outcomes. This supports the conclusions of the previous comparison of regressions
which suggested that participants who frequently make comments that reference specific
parts of the emails they are shown may have worse training outcomes. Taking these results
in mind while observing the results of regressions shown in Figure 2 suggests that LLM
models should seek to make their feedback specific and reference the emails that are being
shown to participants, but steer human participants away from focusing too much on the
specifics of the email in question in their own messages.

4.7. Student Quiz Responses

The next set of cosine similarity analyses that we perform using the cosine similarity of
messages and emails compares the performance of students on the quizzes they completed
before and after training.

4.7.1. Student Pre-Experiment Quiz

The left column of Figure 4 compares the pre-experiment quiz score of students
to the message cosine similarity between the emails and the messages sent by human
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students and LLM teachers. Here we see no correlation between the messages sent by 4
either students (Pearson Correlation: R? = 0.047, p = 0.32, ANOVA: F(22,464) = 1.195,
p = 0.247, 77%, = 0.054) or teachers (Pearson Correlation: R> = 0.002,p = 0.81, ANOVA: s
F(25,1720) = 1.261, p = 0.174, 17% = 0.018). As with the user initial performance, this s
makes intuitive sense since the base level of student ability shouldn’t have a direct impact 4.0
on the way that students and teachers communicate relative to the email that the student 4
is observing. One potential difference between these communications that is not directly 4
measured in this analysis is the information within the email itself that may be focused on 43
more or less in conversations depending on student initial ability. 434

4.7.2. Student Post-Experiment Quiz 435

The middle column of Figure 4 compares user participant perception of emails as s
being Al generated and the similarity of messages sent between human students and
LLM teachers and the current email being observed. Here we see no correlation for s
messages sent by human students (Pearson Correlation: R?> = 0.005, p = 0.75, ANOVA: o
F(22,464) = 1.348, p = 0.135, 17,2, = 0.060) or for messages sent by the LLM teacher (Pearson o
Correlation R? = 0.117, p = 0.869, ANOVA: F(25,1720) = 0.702, p = 0.86, 17]% = 0.010). 4«
There is a slight negative trend here observable as pattern, where a lower perception of
emails as being Al generated is slightly associated with a lower LLM teacher message s
cosine similarity. This is an interesting trend as the true correct percentage of emails that .
are Al generated is 100%, however this trend is statistically not significant. a45

4.7.3. Student Post-Experiment Open Response 446

The right column of Figure 4 compares the similarity between the current email being 4
observed by a student and the open response messages that they gave to the question of s
how they made their decisions of whether emails were safe or dangerous. Here we see the s
strongest and most significant trend over all of the embedding similarity regressions we s
have performed. There is a strong positive trend for human student messages with both
correlation measures (Pearson Correlation: R% = 0.655, p < le—3, ANOVA: F(22,464) =
5.624, p = 4.86e — 14, 77;2, = 0.211) and LLM teacher messages (Pearson Correlation RZ = s
0.595,p < 1le — 3, ANOVA: F(25,1720) = 1.377, p = 0.102, 17]% = 0.020) where the more s
similar a message is to the email that the human student is observing, the more similar that s
message is to the open response question at the end of the experiment. For the LLM teacher s
messages, this effect shows less robust according to ANOVA. as7

4.8. User Demographics e

The final set of cosine similarity regressions we perform compares the similarity of s
messages sent by human students and LLM teachers and the different demographics s
measurements that were included in the original dataset. 461

4.8.1. Age 462

Comparing the age of participants and their conversations demonstrates a significant s
correlation to the messages sent by human students (Pearson Correlation: R> = 0.315,p = e
0.005, ANOVA: F(22,464) = 1.395, p = 0.11, p = 0.062), and an insignificant but present s
trend for the messages sent by the Teacher LLM (Pearson Correlation: R? = 0.115,p = s
0.0904, ANOVA: F(25,1720) = 1.122, p = 0.307, 77% = 0.016). Both of these correlations s
trend negative, indicating that older participants have less correlation in the messages s
they send and the emails they are currently observing. ANOVA confirms a small-to- s
moderate effect size of this for the student-message similarity over groups, while being not o
conventionally significant, since it can’t be consistently observed across all groups. a7t
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Age Gender Number Education Years
vs MessageeEmail Cosine Similarity vs MessageeEmail Cosine Similarity vs MessageeEmail Cosine Similarity
Human Student: R2=0.315, p=0.00531 104 Human Student: R2=0.058, p=0.27 Human Student: R2=0.333, p=0.00397

Teacher LLM: R2=0.115, p=0.0904 Teacher LLM: R2=0.024, p=0.452 Teacher LLM: R2=0.004, p=0.756
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Figure 5. On all plots, orange indicates messages sent by the teacher LLM and blue represents mes-
sages sent by the human student. Shaded regions represent 95% confidence interval and similarities
are binned to the nearest 0.01. Top Left: A correlation analysis between message cosine similarity
to emails with user age, showing a significant negative correlation for both types of messages. Top
Middle: A correlation analysis of message cosine similarity to emails and student gender, indicating
no significant correlation for student messages and a no significant correlation for teacher messages.
Top Right: A correlation analysis between student number of years of education and message co-
sine similarity to emails, indicating no significance for messages sent by teachers but a significant
positive trend for messages sent by students. Bottom Left: A correlation analysis between message
cosine similarity to emails and phishing experience, as measured by a pre-experiment questionnaire,
indicating a insignificant positive trend for both types of messages. Bottom Middle: A correlation
analysis of experience with chatbots, as measured by a pre-experiment questionnaire, and message
cosine similarity to emails, indicating no significant trend for either type of message. Bottom Right:
A correlation analysis comparing message cosine similarity to emails and cognitive model activity,
as measured by the condition of the experiment, indicating a significant positive trend for teacher
messages and no trend for student messages.

4.8.2. Gender

To perform a regression in the same format as the previous analyses, we arbitrarily
assigned female to a value of 1 and male to a value of 0 (there were 0 non-binary students
in this subset of the original dataset). This allowed for an analysis, shown in the top-
middle of Figure 5, which shows no correlation between the gender number of students
and the messages sent by either human students (Pearson Correlation: R? = 0.058, p =
0.27, ANOVA: F(22,464) = 1.110, p = 0.331, 17% = 0.050) or by teacher LLMs (Pearson
Correlation: R? = 0.025, p — 0.452), ANOVA: F(25,1720) = 0.880, p = 0.635, 17}27 = 0.013).
This indicates that male and female students sent similar messages, and that the LLM
replied with similar messages. While these results are insignificant, they do suggest that
accounting for gender differences in how LLM teaching models give feedback to students
is less of a priority compared to other subpopulations of students.

4.8.3. Education

Comparing the similarity of embeddings of messages sent between human students
and LLM teachers demonstrates a correlation with the years of education that the student
has received for messages sent by the human student (Pearson Correlation: R? = 0.33,p =
0.003), ANOVA: F(22,464) = 0.991, p = 0.474, 77;2, = 0.045) but not for the messages sent
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by the teacher LLM (R? = 0.004,p = 0.756, ANOVA: F(25,1720) = 0.984, p = 0.486,
17% = 0.014). The positive trend between the number of years of education and the human
student message cosine similarity to emails indicates that students with higher education
send messages that more closely match the information contained in the emails they are
observing. This effect is continuous but not significant with ANOVA, so it is more a trend
showing than a stepwise jump between education categories. As mentioned with regards to
age, education level is another important group to account for when improving educational
outcomes, meaning education level could be a target for future improvement in LLM
teacher feedback.

4.8.4. Phishing Experience

The next analysis we performed compared the level of phishing experience of human
students, as measured by the response that students gave to the number of times that
they have received a phishing email. We again mapped this discrete categorization onto a
value to perform a regression. When we compare this measure of experience to the cosine
similarity of messages sent and emails, we see no significant correlation in either messages
sent by human students (Pearson Correlation: R* = 0.105, p = 0.131, ANOVA: F(22,464) =
0.923, p = 0.565, 17]% = 0.042) or the teacher LLM (Pearson Correlation: R> = 0.118,0.085,
ANOVA: F(25,1720) = 0.912, p = 0.589, 17% = 0.013). While insignificant, both of these
regressions demonstrate a slightly positive trend suggesting that more experienced users
may be more likely to send messages related to the emails they are observing.

4.8.5. Chatbot Experience

Similar to phishing experience, chatbot experience was determined by mapping a
multiple choice question onto values to allow for a regression. Interestingly, we see no
correlation between email embeddings and the embeddings of messages sent by either
human students (Pearson Correlation: R? = 0.006, p = 0.734, ANOVA: F(22,464) = 1.332,
p = 0.144, 75 = 0.059) or teacher LLMs (Pearson Correlation: R”.035, p = 0.363, ANOVA:
F(25,1720) = 1.016, p = 0.442, 17% = 0.015), with both regressions displaying near 0 trends
and high p-values. This indicates that the conversations during training were equally likely
to be related to the emails that were being observed by participants whether the student
had little or a high amount of experience with LLM chatbots. Typically we would assume
that participants would converse differently if they had more experience, but here it is
important to note we are comparing one specific aspect of the messages, whether they are
related to the email being observed, meaning other comparisons of these conversations
may display a difference across chatbot experience level.

4.8.6. Cognitive Model Activity

The final regression that we perform looked at the ’cognitive model activity’, which
is a stand-in for the condition of the experiment. While not directly a demographic, this
did compare the messages sent by humans and the LLM based on the condition of the
experiment. This metric was determined based on whether the IBL cognitive model used in
the experiment performed no role (0), either determined the emails to send to participants
or was used to prompt the LLM (1), or if the IBL model performed both of these tasks (2).

Comparing this measure of cognitive model activity which differed across experiment
conditions demonstrates a positive and significant trend for messages sent by the LLM
teacher, though the ANOVA shows no significant group-level effect (Pearson Correlation:
R? = 0.196,p = 0.023, ANOVA: F(25,1720) = 1.159, p = 0.267, ;7% = 0.017). This indi-
cates that LLM messages are more likely to align with emails when the cognitive model is
more active, even if differences across groups are minimal. For human student messages,
the Pearson correlation shows no significant relationship, but ANOVA indicates signifi-

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

532

533

534

535

536



Version October 20, 2025 submitted to Electronics 15 of 32

cant differences across conditions (Pearson Correlation: R% = 0.004, p = 0.769, ANOVA: s
F(22,464) = 1.725, p = 0.0222, 17% = 0.076). This suggests that while overall message s
similarity is not linearly correlated with cognitive model activity, there are measurable s
differences in how students respond depending on the experimental condition. 540

Table 1. Significant Mediation Effects on Correct Categorization

Context Ind Coef. SE p CI25% CI197.5% Sig
(Student+Teacher) ~
Age -0.00586 0.00238 0.012  -0.0109  -0.0019 Yes
(Student+Teacher) ~
Al Gen Perception 0.00395 0.00220 0.044 0.000156  0.00834 Yes

(Student+Teacher) ~

Response Msg Similarity 0.00884 0.00347 0.004  0.00285 0.0157  Yes
(Teacher) ~

Education Years -0.00582 0.00292 0.020  -0.0131 -0.00137 Yes
(Teacher) ~

Response Msg Similarity 0.00922 0.00296 0.000  0.00459 0.0165 Yes

4.9. Mediation Analysis sa1

In addition to regression analyses, we are interested in the impact of each of the s«
demographic variables (Figures 3-4) on measures of student performance (Figure 1-2). For s
brevity, we focus our analysis on demographic measure impact on correct categorization. s
Mediation analysis can be used to test whether the impact of a variable X on Y is at lest par- s
tially explained by the effects of an intermediate variable M, called the ‘mediator’ [58]. This s
analysis is commonly used in social psychology [59], human-computer interaction [60], and s«
in LLM research such as investigations of potential gender biases in LLMs [61]. This analy- s
sis was performed using the Pingouin python library package [62]. All of the significant s«
mediation effects reported in this section are summarized in Table 1. 550

4.9.1. Mediation of Student and Teacher Messages 551

Our first set of mediation analyses compared whether the impact of demographic s
variables on student correct categorization could be mediated by the cosine similar- sss
ity of student or teacher message embeddings and email embeddings. Out of all of s
the demographic variables, three significant mediation effects were observed. The s
first was Age, which had a significant total effect (coef = 0.046,SE = 0.0211,p = ss
0.0299, C195%[0.00448, 0.0874]), a significant direct effect (coef = 0.0518,SE = 0.0211,p = s
0.0141, CI95%[0.0104, 0.0932]), and a significant indirect effect (coef = —0.00586,SE = s
0.00238, p = 0.012, C195%[—0.0109, —0.0019]). 559

The next significant mediation effect was of the effect of Al generation perception on s
correct categorization. There was a significant total effect (coef = —0.12,SE = 0.021,p = s«
1.293e — 08, C195%[—0.161, —0.0788]), direct effect (coef = —0.124,SE = 0.0209,p = s
3.741e — 09, CI95%][—0.165, —0.0829] ) and indirect effect (coef = —0.00395, SE = 0.0022,p = s
0.044, C195%(0.000156, 0.00834] ). 564

The final significant mediation effect when using both student and teacher message  ses
similarities as a mediator is Response Message Similarity which had a significant total effect  ses
(coef = 0.235,SE = 0.0206, p = 2.062¢ — 29,CI195%[0.195,0.275]), direct effect (coef = sor
0.226,SE = 0.0208,p = 6.212¢ — 27,CI195%[0.185,0.267]), and indirect effect (coef = s
0.00884, SE = 0.00347, p = 004, C195%]0.00285,0.0157]) 569
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4.9.2. Mediation of Teacher Messages Only

The first of the two significant mediation effects with respect to teacher message cosine
similarity to emails is on Education Years which had a significant total effect (coef =
—0.109, SE = 0.0238,p = 5.421e — 06, CI195%[—0.155, —0.0619]), direct effect (coef =
—0.103, SE = 0.0237, p = 1.557e — 05, CI195%[—0.149, —0.0562]), and indirect effect (coef =
—0.00582, SE = 0.00292, p = 0.02, CI195%[—0.0131, —0.00137]).

The second significant effect of teacher messages is that of Response Message Sim-
ilarity which had a significant total effect (coef = 0.217,SE = 0.0234,p = 4.474e —
20,CI95%[0.171,0.263]), direct effect (coef = 0.208,SE = 0.0234,p = 1.665¢ — 18
CI195%]0.162,0.254]), and indirect effect (coef = 0.00922,SE = 0.00296,p = 0,CI95%
[0.00459,0.0165]).

5. Results

Before beginning our summary and interpretation of the above analysis, it is important
to reiterate the reason for our analysis and the meaning of statistical significance in the
context of correlational analysis. We initially sought to perform an exploratory analysis
to compare potential areas of improvement in LLM teacher feedback generation. This is a
broad question with many possible methods of improvement, necessitating the narrowing
down of potential methods. While these results point to possible methods of improvement,
they do not exclude the possibility that alternatives may also lead to improvements in LLM
teacher feedback.

Across the 30 regressions that we performed, 12 reached statistical significance and 6
of the others showed meaningful trends. We additionally performed 25 mediation analyses
which showed 5 significant mediation effects. Taken together, these results form a coherent
picture of how email embedding cosine similarity to embeddings of messages sent by
both students and teachers relates to student performance and learning. The following
analyses summarize and synthesize the results of our message-email similarity analysis
and make actionable recommendations for both real-world online training platforms and
future studies of human learning using natural language feedback provided by LLMs.

In categorization accuracy, both student and teacher message-email similarity were
positively correlated with student categorization accuracy. The similarity between the
student message and email with the emails showed a moderate effect that is not consistent
across categories, while this same metric for the LLM teacher messages showed a strong
effect that is also confirmed by ANOVA score, suggesting that the LLM teacher messages
that closely aligned with the observed email were most useful for guiding correct responses.
This makes intuitive sense since feedback for participants that references the email they
are currently observing would typically be more relevant than less email-related feedback.
While this analysis is correlational, it does demonstrate one area that future LLMs could be
trained to optimize, by encouraging or preferring responses that are more closely related to
the emails that students are currently categorizing.

Building on this, the confidence results gave important insights: students who echoed
the content of the emails more closely actually felt less confident, whereas higher teacher
message-email similarity increased confidence. This correlation indicates that a student
who is frequently making questions or comments that directly reference parts of the emails
in the training might indicate someone who needs more experience and varied feedback
to achieve higher improvement levels. Taken together, these findings indicate that while
alignment with the email improves accuracy, when it is the student providing the overlap,
it may signal uncertainty, whereas teacher-provided overlap reassures students.

For LLM-supported learning platforms, this finding suggests potential avenues for
development toward greater user engagement in the conversation with the LLM teacher
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during email categorization, which also extends the insights reported in [4,44]. Also, such
a level of guidance cannot be provided in traditional in-person training [11].

With taking also reaction times into account, we found that teacher message-email
similarity was significantly associated with longer response times in terms of Pearson
Correlation, while student message cosine message-email similarity showed no significant
effect. The ANOVA results suggested that neither variable exerted a statistically significant
effect. While accuracy and confidence are clear objectives for improvement, which are
both increased with higher teacher message-email similarity, a preference for either higher
or lower reaction time is less obvious. Taking these results on reaction into account with
the previous correlation analysis may indicate that while teacher message-email similarity
may improve the important metrics of accuracy and confidence, that may come at the
cost of a longer time requirement for students. In some educational scenarios this may
be a trade-off, if student time is a significantly constrained resource. However, in other
settings the improvement on accuracy and confidence correlated with teacher message-
email similarity may be much more important, meaning the increased time requirement is
relatively irrelevant.

When we turn from immediate task performance to learning outcomes, the results
show a different pattern. Greater similarity between student message and the email text
was negatively associated with both learning improvement and final performance, while
teacher message-email similarity showed no significant relationship in either case. So high
student message-email similarity predicts weaker learning, suggesting that anti-phishing
training should encourage flexible strategies rather than focusing on specific examples.
Taken together with the results on confidence and accuracy, this set of findings indicates that
student message-email similarity is positively associated with immediate correctness but
negatively associated with learning gains and final outcomes, while teacher message-email
similarity is linked to immediate performance benefits without clear effects on longer-term
improvement.

Students who closely echo phishing emails may rely too heavily on surface features,
indicating that training should emphasize broader pattern recognition rather than simple
repetition. Overall, over-reliance on specific email features may hinder broader learning
and decision-making, highlighting the importance of teaching generalizable strategies
for identifying phishing attempts. This becomes particularly important in the context of
GAl-generated phishing emails, as these may be detected based on patterns beyond mere
textual features [31-33].

The strongest effects we observed came in the post-experiment open responses, where
both student and teacher message-email similarity were strongly and positively related to
the strategies that students reported using. This is an interesting result as the open response
questions ask the student to reply on their general strategy, rather than a specific email they
observed. This indicates that it may be useful for LLM teachers to discuss the strategies
that students use to determine if an email is safe during their feedback conversations with
students.

Because these questions asked students to describe their general strategy rather than
respond to a specific email, this suggests that anti-phishing training could benefit from
emphasizing strategy development over rote memorization of individual examples [43],
building on what was previously outlined in this regard. GAI LLMs could support this by
providing strategy-focused feedback and offering personalized prompts when students
rely too heavily on surface cues, as well as guiding post-task reflection on the strategies
applied. Together, these approaches could help address a common challenge in phishing
defense: students’ tendency to over-rely on specific email features rather than developing
robust, transferable detection strategies.
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Our analysis of the LLM teacher and human student message-email similarity with
respect to student demographics revealed important implications for improving diversity,
equity, and inclusion in online training platforms. One of the most important aspects
of equality in education is effective progress for students of all ages. This is especially
important in anti-phishing education and the elderly as they are one of the most susceptible
subpopulations with regards to phishing attempts [63]. These results indicate that older age
groups may be less likely to have conversations about the specific emails they are observing
in anti-phishing training. Taking this into account when providing natural language
educational feedback could improve the learning outcomes of more aged individuals.

Finally, our analysis of mediation effects provided further support to the evidence
that the types of messages that are sent between students and teachers, as well as the
types of messages teachers send independently, can alter the impact of demographics on
student performance. This was identified by the five mediation analyses with significant
indirect effects, demonstrating that part of the impact of these demographics effects on
correct categorization can be explained in part by effects related to how students and
teachers communicate. This indicates that by improving the way that teacher LLMs, such
as by using the metrics we suggest in this section, there maybe a similar improvement in
the performance of students that reduces the biases related to specific subpopulations of
students. This is a major target for improving LLM teacher quality, as it can potentially
lead to more equitable outcomes in the application of LLM teachers, and reduce some of
the concern over their widespread adoption.

6. Discussion

In this work we present a dataset of embeddings of messages sent between LLM
teachers and human students in an online anti-phishing educational platform. The goal of
this dataset is to be applied onto improving the quality of LLM teacher educational feedback
in a way that can account for potential biases that exist within LLMs that raise concerns
regarding their widespread adoption. Our analysis revealed relationships between metrics
of educational outcomes and the semantic alignment of educational feedback discussions,
as measured by the cosine similarity of message embeddings and the educational email
embeddings. In general, we found that when the LLM teacher’s feedback closely mirrored
the content of the email under discussion, students performed better on the immediate
task. We additionally found some correlations between these educational outcomes and the
similarity of student messages to email examples, but overall the conclusions were more
mixed compared to the analysis of teacher messages. Additionally, our mediation analysis
provided further support that teacher message and email embedding similarity can serve
as a mediator for the effect of several important demographics on the impact of student
performance.

These results suggest that message-email similarity can be an important target for
testing methods in training, fine-tuning, and prompting without the requirement of running
additional tests with human subjects which can be costly, or relying on simulated LLM
students which can have issues transferring to real world student educational improvement.
Moreover, these results have applications outside of describing targets for testing methods
by detailing some of the most important subpopulations to focus on for improvement of
the quality of LLM teacher responses in the content of anti-phishing training. Specifically,
age, education, phishing experience and experience with Al chatbots were identified
as demographics in which certain subpopulations may be disproportionally negatively
impacted by lower quality teacher LLMs. Our mediation analysis, as well as ANOVA
and regression analyses, provided evidence that improving the quality of LLM teacher
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responses using the methods we suggest can have a positive impact on the educational
outcomes of these subpopulations.

Another possible approach to incorporate the lessons learned from this work into the
design of new LLM teaching models is to attempt to detect and address learner confusion
over phishing emails proactively. The negative correlation of student message similarity
with learning outcomes indicates that over-fixation on specific aspects of the email examples
can be a real-time signal that LLM teachers can use to adjust their feedback. Whether done
through chain of thought reasoning or other methods, leveraging the similarity of user
messages to their emails can give insight into their learning and indicate a way to improve
training by adjusting the teaching approach in response to these types of messages. In the
dataset we present, we noted a correlation between teacher and student message similarity
with respect to several metics, which indicates that LLM teachers are often similarly narrow-
focused as students. The degree of this specificity could be adjusted in response to student
message similarity to emails, and avoid merely mirroring the specificity that user messages
exhibit.

In addition to the significant positive correlations we report, there are also interesting
negative correlations that differ from expectations given the correlation of other demo-
graphics and educational metrics. Specifically, we found that students who frequently
send messages that are more closely related to the emails being observed actually had
worse overall performance and training improvement. This can be explained by several
different causes, such as less knowledgeable students more often choosing to ask questions
that make reference to specific aspects of the emails they are observing, rather than the
topic they are learning more broadly. This type of effect may allow for a chain of thought
reasoning LLM model to identify when students are sending messages of this type, and
adjust the method of providing educational feedback based on this insight.

By implementing these recommendations, anti-phishing and other types of online
training platforms that use LLMs can potentially produce more responsive educational
tools rather than one-size-fits-all chatbots that could disproportionally negatively impact
the educational quality of important subpopulations. However, there are limitations to
this work that raise important areas for future research. As mentioned, we performed
only regression and mediation analysis on the demographics and learning outcomes of the
dataset we had available, and our introduced embeddings of conversations. While this
allowed us to make useful recommendations for future LLM teaching models, it is a limited
view of the ways that LLM models can be improved. One useful area of future research that
could leverage this same dataset or collect new data would be to compare the prompting of
the LLMs and how they output educational feedback. LLM prompting was not a major
investigation of this research as we chose to create embeddings of messages themselves,
but a similar approach using LLM prompts could also be used to draw conclusions for
important targets of LLM teacher optimization.

Beyond the work we present here, there are many additional contexts that LLM
teaching feedback improvement can be applied to. Educational settings are one high-risk
application of LLMs, which requires significant research into improving response quality
and ensuring a lack of bias. Part of the reason for this is that in many situations humans
will be interacting directly with the LLM without a dedicated human teacher. Alternative
settings may have lower risks associated with them, such as in teaming settings where
humans are using LLMs in cybersecurity contexts such as paired programming or as a tool
for network analysis, threat detection, and a variety of other applications. Further research
into how the results here can be applied to these settings can add to our understanding of
how LLMs interact with humans.
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Ethics Statement

The use of large language models (LLMs) in education carries significant ethical chal-
lenges. LLM outputs can be impacted by existing societal biases, such as those related to
race, gender, or age. These biases have the potential to cause unequal learning experiences
or reinforcing harmful stereotypes. The dataset presented in this work, and the recom-
mendations we give to future LLM teaching models, are intended to mitigate the issues
associated with unequal learning outcomes through our analysis of the learning of specific
subpopulations and how it can be improved.

Training the LLM models used to converse with human participants, as well as the
embedding models used to create the dataset we present demands immense computational
resources, contributing to carbon emissions and other environmental impacts. Moreover,
many widely used LLMs are built on datasets that include text gathered without the
creators’ knowledge or consent, raising serious questions about intellectual property rights,
privacy, and the equitable sharing of benefits from such data. We attempted to mitigate
these concerns through our analysis of different open and closed source embedding models
in their effectiveness to relate embeddings to student learning outcomes. We additionally
compared embedding models of different sizes to evaluate how smaller less computational
intensive models fair in our applications.
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Appendix

In this appendix, ME-CS refers to the email cosine similarity metric used in our

regression analyses.

ANOVA analyses tables

Table 2. ANOVA results relating ME-CS to outcomes

Source  Outcome dfy  df2 F p 17,2,
Student Correct 22 464 0.841 0.674 0.038
Teacher Correct 25 1720 1.648 0.0231 0.023
Student Confidence 22 464 1.539 0.0569 0.068
Teacher Confidence 25 1720 1.652 0.0225 0.023
Student ReactionTime 22 464 1.155 0.284 0.052
Teacher ReactionTime 25 1720 0.882 0.632 0.013
Student User Initial Performance 22 464 0.692 0.849 0.032
Teacher User Initial Performance 25 1720 0.863 0.659 0.012
Student User Improvement 22 464 1.557 0.0521 0.069
Teacher User Improvement 25 1720 1.014 0.444 0.015
Student User Final Performance 22 464 1.705 0.0247 0.075
Teacher User Final Performance 25 1720 1.189 0.237 0.017
Student Pre-Experiment Quiz Score 22 464 1.195 0.247 0.054
Teacher Pre-Experiment Quiz Score 25 1720 1.261 0.174 0.018
Student Al Gen Percept 22 464 1.348 0.135 0.060
Teacher Al Gen Percept 25 1720 0.702 0.86 0.010
Student Response Mssg Sim 22 464 5.624 4.86e—14 0.211
Teacher Response Mssg Sim 25 1720 1.377 0.102  0.020
Student Age 22 464 1.395 0.11 0.062
Teacher Age 25 1720 1.122 0.307 0.016
Student Gender Number 22 464 1.110 0.331 0.050
Teacher Gender Number 25 1720 0.880 0.635 0.013
Student Education Years 22 464 0991 0.474 0.045
Teacher Education Years 25 1720 0.984 0.486 0.014
Student Phishing Experience 22 464 0923 0.565 0.042
Teacher Phishing Experience 25 1720 0.912 0.589 0.013
Student Chatbot Experience 22 464 1.332 0.144 0.059
Teacher Chatbot Experience 25 1720 1.016 0.442 0.015
Student Cognitive Model Activity 22 464 1.725 0.0222  0.076
Teacher Cognitive Model Activity 25 1720 1.159 0.267 0.017
Mediation Analyses

Table 3. Mediation analysis Student and Teacher Messages on User Improvement by Age

Path Coef. SE p CI25% CI197.5% Sig
Age

~ Age -0.0609  0.0211  0.00396 -0.102  -0.0195 Yes
User Improvement

~ Age 0.00136  0.0212 0.949  -0.0402 0.0429 No
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Path Coef. SE p CI25% CI197.5% Sig
Total -0.0264  0.0212 0212  -0.0679 0.0151 No
Direct -0.0264  0.0212 0.213 -0.068 0.0151 No
Indirect 1.507e—05 0.00116 098 -0.00254  0.00219 No

Table 4. Mediation analysis Student and Teacher Messages on User Improvement by Education Years

Path Coef. SE p CI25% CI97.5% Sig
Education Years

~ Education Years -0.0326  0.0212 0.124  -0.0741 0.00893 No
User Improvement

~ Education Years -0.214  0.0207 1.550e—24 -0.255 -0.173  Yes
Total -0.0264  0.0212 0212  -0.0679 0.0151 No
Direct -0.0334  0.0207 0.106 -0.074 0.00713 No
Indirect 0.007 0.00466 0.1 -0.00167 0.017 No

Table 5. Mediation analysis Age Messages on Correct Categorization by Student and Teacher

Path Coef. SE p CI25% CI197.5% Sig
ME-CS

~ Age -0.0609  0.0211 0.00396 -0.102  -0.0195 Yes
User Improvement

~ ME-CS 0.093  0.0211 1.082e—05  0.0516 0.134 Yes
Total 0.046  0.0211 0.0299  0.00448 0.0874 Yes
Direct 0.0518  0.0211 0.0141  0.0104 0.0932  Yes
Indirect -0.00586  0.00238 0.012  -0.0109 -0.0019  Yes

Table 6. Mediation analysis Education Years Messages on Correct Categorization by Student and

Teacher

Path Coef. SE p CI25% CI197.5% Sig
ME-CS

~ Education Years -0.0326 0.0212 0.124 -0.0741 0.00893 No
User Improvement

~ ME-CS 0.093  0.0211 1.082e—05 0.0516 0.134 Yes
Total -0.151 0.0209 6.906e—13 -0.192 -0.11  Yes
Direct -0.148  0.0209 1.561le—12 -0.189 -0.107  Yes
Indirect -0.00287  0.00208 0.1 -0.0085 0.000427 No

Table 7. Mediation analysis Phishing Experience Messages on Correct Categorization by Student and
Teacher

Path Coef. SE p CI25% CI975% Sig

ME-CS
~ Phishing Experience ~ 0.0242  0.0212 0254 -0.0173 0.0657 No
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Path Coef. SE p CI25% CI197.5% Sig
User Improvement
~ ME-CS 0.093 0.0211 1.082e—05 0.0516 0.134 Yes
Total 0.172 0.0209 2.797e—16 0.131 0.213  Yes
Direct 0.17 0.0208 5.082e—16 0.129 0.211  Yes
Indirect 0.00215 0.00202 0.26 -0.00159 0.0064 No

Table 8. Mediation analysis Chatbot Experience Messages on Correct Categorization by Student and

Teacher

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Chatbot Experience 0.000442  0.0212 0.983  -0.0411 0.042 No
User Improvement

~ ME-CS 0.093  0.0211 1.082e—05 0.0516 0.134  Yes
Total -0.0209  0.0212 0323  -0.0624 0.0206 No
Direct -0.021  0.0211 032  -0.0623 0.0204 No
Indirect 4.114e—05 0.00202 0.94 -0.00374  0.00476 No

Table 9. Mediation analysis Al Generation Perception Messages on Correct Categorization by Student

and Teacher

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Al Generation Perception ~ 0.0403  0.0212 0.0567 -0.00115 0.0818 No
User Improvement

~ ME-CS 0.093 0.0211 1.082e—05 0.0516 0.134 Yes
Total -0.12  0.021 1.293e—08 -0.161 -0.0788  Yes
Direct -0.124  0.0209 3.741e—09 -0.165  -0.0829 Yes
Indirect 0.00395  0.0022 0.044 0.000156  0.00834 Yes

Table 10. Mediation analysis Pre Experiment Quiz Score Messages on Correct Categorization by

Student and Teacher

Path Coef. SE p CI25% CI197.5% Sig
ME-CS

~ Pre Experiment Quiz Score -0.0079  0.0212 0.709  -0.0494 0.0336 No
User Improvement

~ ME-CS 0.093  0.0211 1.082e—05  0.0516 0.134  Yes
Total 0.0702  0.0211 9.064e—04  0.0288 0.112  Yes
Direct 0.0709 0.021 7.603e—04  0.0297 0.112  Yes
Indirect -0.000738  0.00204 0.684 -0.0046  0.00331 No
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Table 11. Mediation analysis Response Message Similarity Messages on Correct Categorization by

Student and Teacher
Path Coef. SE p CI25% CI97.5% Sig
ME-CS
~ Response Message Similarity 0.149 0.0209 1.244e-12 0.108 0.191 Yes
User Improvement
~ ME-CS 0.093  0.0211 1.082e—05 0.0516 0.134  Yes
Total 0.235  0.0206 2.062e—29 0.195 0.275 Yes
Direct 0.226  0.0208 6.212e—27 0.185 0.267 Yes
Indirect 0.00884 0.00347 0.004 0.00285 0.0157 Yes
Table 12. Mediation analysis Age Messages on Correct Categorization by Teacher

Path Coef. SE p CI25% CI97.5% Sig

ME-CS

~ Age -0.0347  0.0239 0.147  -0.0817 0.0122 No

User Improvement

~ ME-CS 0.109  0.0238 4.827e—06 0.0625 0.156  Yes

Total 0.0323  0.0239 0.177  -0.0146 0.0793 No

Direct 0.0362  0.0238 0.129  -0.0105 0.0829 No

Indirect -0.00383  0.00258 0.1 -0.00978 0.00013 No

Table 13. Mediation analysis Education Years Messages on Correct Categorization by Teacher

Path Coef. SE p CI25% CI197.5% Sig
ME-CS

~ Education Years -0.0563  0.0239 0.0186 -0.103  -0.00944 Yes
User Improvement

~ ME-CS 0.109  0.0238 4.827e—06 0.0625 0.156  Yes
Total -0.109  0.0238 5.421e—06 -0.155 -0.0619  Yes
Direct -0.103  0.0237 1.557e—05 -0.149 -0.0562  Yes
Indirect -0.00582 0.00292 0.02 -0.0131 -0.00137 Yes

Table 14. Mediation analysis Phishing Experience Messages on Correct Categorization by Teacher

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Phishing Experience ~ -0.00269  0.0239 091  -0.0497 0.0443 No
User Improvement

~ ME-CS 0.109  0.0238 4.827e—06 0.0625 0.156 Yes
Total 0.0798  0.0239 8.405e—04 0.033 0.127  Yes
Direct 0.0801  0.0237 7.498e—04 0.0336 0.127  Yes
Indirect -0.000295  0.00264 0.848 -0.00468  0.00516 No
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Table 15. Mediation analysis Chatbot Experience Messages on Correct Categorization by Teacher

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Chatbot Experience ~ 0.0254  0.0239 0.288  -0.0215 0.0724 No
User Improvement

~ ME-CS 0.109  0.0238 4.827e—06 0.0625 0.156 Yes
Total -0.0248  0.0239 0301  -0.0717 0.0222 No
Direct -0.0275  0.0238 0.247  -0.0742 0.0192 No
Indirect 0.00279  0.00288 0.316 -0.00189  0.00933 No

Table 16. Mediation analysis Al Generation Perception Messages on Correct Categorization by

Teacher

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Al Generation Perception 0.00958  0.0239 0.689  -0.0374 0.0565 No
User Improvement

~ ME-CS 0.109  0.0238 4.827e—06 0.0625 0.156  Yes
Total -0.082  0.0239 6.084e—04 -0.129 -0.0351  Yes
Direct -0.083  0.0237 4.797e—04 -0.13 -0.0365  Yes
Indirect 0.00105 0.00283 0.756 -0.00371  0.00719 No

Table 17. Mediation analysis Pre Experiment Quiz Score Messages on Correct Categorization by

Teacher

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Pre Experiment Quiz Score ~ 0.00486  0.0239 0.839  -0.0421 0.0518 No
User Improvement

~ ME-CS 0.109  0.0238 4.827e—06  0.0625 0.156  Yes
Total 0.052  0.0239 0.0298  0.00511 0.0989  Yes
Direct 0.0515  0.0238 0.0305 0.00484 0.0981 Yes
Indirect 0.000529  0.00242 0.88 -0.0038  0.00657 No

Table 18. Mediation analysis Response Message Similarity Messages on Correct Categorization by

Teacher

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Response Message Similarity 0.106  0.0238 9.378e—06  0.0591 0.153  Yes
User Improvement

~ ME-CS 0.109 0.0238 4.827e—06  0.0625 0.156  Yes
Total 0217  0.0234 4.474e—20 0.171 0.263 Yes
Direct 0.208  0.0234 1.665e—18 0.162 0.254 Yes
Indirect 0.00922  0.00296 0.0e+00  0.00459 0.0165 Yes
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Table 19. Mediation analysis Age Messages on Correct Categorization by Student

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Age -0.131 0.045 0.00371 -0.22 -0.0428  Yes
User Improvement

~ ME-CS 0.0628  0.0453 0.166  -0.0262 0.152 No
Total 0.092  0.0452  0.0424 0.00316 0.181 Yes
Direct 0.102  0.0455 0.0255  0.0126 0.191  Yes
Indirect -0.01 0.00724 0.104 -0.0292 0.000972 No

Table 20. Mediation analysis Education Years Messages on Correct Categorization by Student

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Education Years 0.0234  0.0454 0.607  -0.0658 0.113 No
User Improvement

~ ME-CS 0.0628  0.0453 0.166  -0.0262 0.152 No
Total -0.247 0.044 3.563e—08 -0.333 -0.16 Yes
Direct -0.248 0.044 2.820e—08 -0.334 -0.162  Yes
Indirect 0.0016  0.00366 0.58 -0.00317 0.0116 No

Table 21. Mediation analysis Phishing Experience Messages on Correct Categorization by Student

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Phishing Experience ~ 0.0839  0.0452 0.0642 -0.00498 0.173 No
User Improvement

~ ME-CS 0.0628  0.0453 0.166  -0.0262 0.152 No
Total 0.353  0.0425 1.063e—15 0.269 0.436  Yes
Direct 035 0.0427 2.197e—-15 0.266 0.434 Yes
Indirect 0.00281 0.00433 0.5 -0.00345 0.0142 No

Table 22. Mediation analysis Chatbot Experience Messages on Correct Categorization by Student

Path Coef. SE p CI25% CI97.5% Sig

ME-CS
~ Chatbot Experience -0.0704  0.0453 0.121 -0.159 0.0186 No
User Improvement

~ ME-CS 0.0628  0.0453 0.166 -0.0262 0.152 No
Total -0.000662  0.0454 0.988 -0.0899 0.0886 No
Direct 0.00378  0.0455 0.934 -0.0856 0.0931 No

Indirect -0.00444 0.00473 0.264 -0.0177  0.00179 No
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Table 23. Mediation analysis AI Generation Perception Messages on Correct Categorization by

Student

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Al Generation Perception 0.114  0.0451 0.0121 0.025 0.202  Yes
User Improvement

~ ME-CS 0.0628  0.0453 0.166  -0.0262 0.152 No
Total -0.192  0.0446 2.017e—05 -0.279 -0.104  Yes
Direct -0.202  0.0447 8.245e—06 -0.29 -0.114  Yes
Indirect 0.00975  0.00632 0.06  0.00106 0.0258 No

Table 24. Mediation analysis Pre Experiment Quiz Score Messages on Correct Categorization by

Student

Path Coef. SE p CI25% CI97.5% Sig
ME-CS

~ Pre Experiment Quiz Score  -0.0423  0.0454  0.351 -0.131 0.0468 No
User Improvement

~ ME-CS 0.0628  0.0453 0.166 -0.0262 0.152 No
Total 0.112  0.0451 0.0136 0.0231 0.2 Yes
Direct 0.115  0.0451 0.0114 0.026 0.203  Yes
Indirect -0.00287  0.00459 048 -0.0177 0.0027 No

Table 25. Mediation analysis Response Message Similarity Messages on Correct Categorization by

Student

Path Coef. SE p CI25% CI197.5% Sig
ME-CS

~ Response Message Similarity 0336  0.0428 2.460e—14 0.252 0.42  Yes
User Improvement

~ ME-CS 0.0628 0.0453 0.166  -0.0262 0.152 No
Total 0.201 0.0445 7.485e—06 0.114 0.289  Yes
Direct 0.203 0.0473 2.069e—05 0.11 0.296  Yes
Indirect -0.00185 0.0162 0912  -0.0355 0.0283 No

Pre-experiment Instructions

Instructions. In this experiment you will determine whether example emails are genuine
or phishing. When reviewing potential phishing emails, pay attention to the following

features. After this screen, there will be a quiz on this information.

*  Real sender does not match the claimed sender: Phishing emails often pretend to be
from reputable companies, but you can usually spot a fake by checking the address
that sent the message. If the From address is a series of numbers, an odd mix of
characters, or not the official domain of the company it claims to be from, it’s likely a

phishing attempt.

*  Email requests credentials: Legitimate companies will never ask for sensitive informa-
tion via email. If the email requests your username, password, credit card information,

or other sensitive data, it's a phishing attempt.
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Suspicious subject line: Phishing emails often use alarmist, threatening, or enticing
subject lines to grab your attention. If the subject is odd, generic, or doesn’t match the
content, it could be a phishing email.

Urgent tone: Phishing scams create a sense of urgency to panic you into acting without
thinking. If an email asks for immediate action (e.g., “Your account will be suspended
unless you update your information”), it’s likely a scam.

Too-good-to-be-true offers: Emails that promise rewards, discounts, or prizes in
exchange for personal information are likely phishing.

Link does not match the text: A common tactic is disguising a dangerous link with
innocent-looking text. Hover your cursor over links before clicking. If the URL doesn’t
match the link text, or looks suspicious in any way, do not click. For instance, if the
link text reads “bank.com” but hovering shows “hackingsite.com”, it’s a phishing
attempt.

Pre-experiment Quiz

1.

@

What type of language do phishing emails often use to create a sense of panic?
*  Urgent language

¢  Friendly language

*  Rude language

*  Mean language

What might a phishing email request of you that would compromise your identity?

*  Personal information like your favorite color
*  Sensitive information like credit card numbers
¢  Sensitive information like your celebrity crush
e  Irrelevant information like your dog’s name

What types of actions might phishing emails request from you that could lead to
malware being installed on your computer?

*  C(Clicking links only

¢ Downloading attachments only

*  Replying with your computer’s information only
e All of the above

How might a phishing email try to ensure that you are susceptible to a phishing
attempt?

*  Being overly friendly

e  Calling you a generic title
¢  Using poor grammar

¢ Saying you won the lottery

How might a phishing email attempt to convince you that it was sent from a legitimate
source?

e  Using an email from a website that you have never heard of

*  Sending the email from a website with a famous company name

* Adding a link to a real website in the text of the email

e  Using another website name that is different from the one sending the email
How might a phishing email convince you to click on a fake link?

e Adding a lot of random numbers and letters into the link

*  Changing the text of the link (can be checked by hovering over it)

*  Changing the color of the link to make it look like you've clicked it before
¢ Keeping the link short so it looks legitimate
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Experiment Questions

1.

Is this a phishing email?
* Yes
* No

On a scale from 1-5, with 5 being totally confident, how confident are you in your
answer to Question 1?

e 1
e 2
e 3
e 4
e 5

What action would you take after receiving this email?

*  Respond

e (Click link

e Check sender
e Check link

¢ Delete email
¢ Report email

Post-experiment Questionnaire

1.

Of the phishing emails you've encountered, what percentage do you think were
generated by artificial intelligence models?

* 100% of the phishing emails I read were written by an Artificial Intelligence
model.

*  75% of the phishing emails I read were written by an Artificial Intelligence model.

*  50% of the phishing emails I read were written by an Artificial Intelligence model.

*  25% of the phishing emails I read were written by an Artificial Intelligence model.

Of the ham (i.e., non-phishing) emails you’ve encountered, what percentage do you
think were generated by artificial intelligence models?

¢ 100% of the ham emails I read were written by an Artificial Intelligence model.
¢ 75% of the ham emails I read were written by an Artificial Intelligence model.
¢ 50% of the ham emails I read were written by an Artificial Intelligence model.
¢ 25% of the ham emails I read were written by an Artificial Intelligence model.

Of the phishing emails you've encountered, what percentage do you think were styled
(i.e., appearance and format) by artificial intelligence models?

¢ 100% of the phishing emails I read were styled by an Artificial Intelligence model.
*  75% of the phishing emails I read were styled by an Artificial Intelligence model.
*  50% of the phishing emails I read were styled by an Artificial Intelligence model.
*  25% of the phishing emails I read were styled by an Artificial Intelligence model.

Of the ham (i.e., non-phishing) emails you’ve encountered, what percentage do you
think were styled (i.e., appearance and format) by artificial intelligence models?

*  100% of the ham emails I read were styled by an Artificial Intelligence model.
*  75% of the ham emails I read were styled by an Artificial Intelligence model.
*  50% of the ham emails I read were styled by an Artificial Intelligence model.
*  25% of the ham emails I read were styled by an Artificial Intelligence model.

What criteria did you use to identify whether an email was a phishing attempt?
Open response.
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